
Code Design and Documenting Considerations

Dick Grune
dick@dickgrune.com

September 21, 2014; DRAFT

1 Anti-aliasing

When a programming language has pointer parameters and global variables,
there can be aliasing problems, one object being reachable under seemingly
unrelated names.

In Teckel there are only three important global objects: Root, Node, and
Parent. All of these have type struct node *. So there is a simple (heuristic)
rule to prevent aliasing in Teckel:

A routine can only refer to global objects when it has no struct

node * parameters.

(There can still be aliasing among local variables, but that is much less likely
to occur.)

There are two situations in which the test is not useful:

1. in the routine oops(), which dumps information

2. in the file print.c, for the same reason

The program check aliases implements these checks and exceptions.
Note that all this is very much geared to Teckel.

2 Tree Access

The postscan requires very frequent and intensive access to parts of the program
tree. For example, the name of the first formal parameter in a function definition
is reached by

fd->child[0]->child[1]->child[0]->child[0]->string

where fd is the node of the function definition.
There are 189 lines with child[0] orchild[1] selections in the present

code, representing a total of 232 choices. Such code is unpleasant to write and
unmaintainable.

The answer to this kind of problem is naming: “sail your ship between Ter-
schelling and Ameland” is much more informative than “sail your ship between
the third and the fourth island”.

The obvious way to do the naming is something like:

1

#define function_definition_2_function_definition_formal_part child[0]

#define function_definition_formal_part_2_formal_parameter_list child[1]

#define formal_parameter_list_2_possibly_typed_identifier child[0]

#define possibly_typed_identifier_2_identifier child[0]

fd->function_definition_2_function_definition_formal_part

->function_definition_formal_part_2_formal_parameter_list

->formal_parameter_list_2_possibly_typed_identifier

->possibly_typed_identifier_2_identifier

->string

which may not be easily readable (_2_ is much more readable than _to_) but
is at least checkable, and may be our best hope to avoid losing our bearings in
the program tree. The #defines can be generated by g2y.

There is, however, one fly in the ointment: g2y knows about the parsing
grammar (syntax.g) only, but at least two processes, the code generator and
the postscan, restructure some parts of the program tree, thereby invalidating
some defines and/or necessitating new ones.

There is a few things we can do about this, all pretty far-fetched:

� inventing a formalism for code generation and the tree transformations
from which we can generate the pertinent code and the defines, Stratego
style.

� use Stratego.

A poor man’s version would be to access remote parts of the program tree
as in the following example:

struct node *function_definition_formal_part =

function_definition->child[0];

struct node *formal_parameter_list =

function_definition_formal_part->child[1];

struct node *possibly_typed_identifier =

formal_parameter_list->child[0];

struct node *identifier =

possibly_typed_identifier->child[0];

identifier->string

This has the advantage that it does not require extensive modification of g2y,
and that intermediate results can be reused. Its use implies, however, that after
a modification of a node X in the program tree, all uses of struct node *X
must be checked.

Each of the solutions emphasizes the importance of naming all nodes in the
program tree.

3 Local Field Access

Some node types need to retain information from teckel run to teckel run. In
an object-oriented language these would be implemented as classes. In this

CDC – 2 September 21, 2014

project a field void *info[N INFO] is set aside in each node for such data. The
question is how to access such data in a node n.

� Simply as n->info[0], n->info[1], etc. One can then define field names:
#define Property info[0] and write n->Property = ’2’;, etc.

The problem is that the type of n->info[0], etc. is always wrong, requir-
ing ugly casts. One has to write n->Property = (Void *)’2’;, etc.

� By imposing a fake structure over the info field.

With the (fixed) macro definition

#define LOCAL *local = (struct local *)(&(Node)->info[0])

we can for example create a local struct definition based on the node called
Node:

struct local {

char Property;

} LOCAL;

and access the field(s) thus:

local->Property = ’2’;

This has the advantage that it is quite readable and writable, but the
disadvantages that 1. the name local is fixed and only one struct can be
called local per scope, and that 2. the overlay is restricted to the node
called Node.

� By more flexibly imposing a fake structure over the info field.

With the (fixed) macro definition

#define DATA(n) (&(n)->info[0])

and for example the structure definition

struct My_locals {

char Property;

};

we can write

struct My_locals *My_data = (struct My_locals *)DATA(That_node);

to create a local struct definition on any node and access the field(s) thus:

My_data->Property = ’2’;

But this is a lot less readable and writable, and oh horror it allows con-
structions like:

CDC – 3 September 21, 2014

3.1 Samples

(struct My_locals *)DATA(That_node)->Property = ’2’;

The basic problem is that the desired construction requires three names:

struct struct_name *local_name = (struct struct_name *)(&(node_name)->info[0]);

which is ugly and error-prone. To conform to C syntax we would like to write
things like

struct struct_name *local_name = ...(node_name); /* no macros */

rather than

Declare_Local(struct struct_name, local_name, node_name); /* one yuck macro */

Perhaps we should define a separate macro for each struct name:

#define struct_name_locals(n) (struct struct_name *)(&(n)->info[0])

which would allow us to define

struct struct_name *local_name = struct_name_locals(node_name);/* one macro */

for any node and which looks pretty acceptable.

3.1 Samples

/* delay_token */

struct delay {

int delay;

};

if (Node->status == NEW) {

((struct delay *)DATA(Node))->delay = 10;

Node->status = WORK;

bye();

return;

}

/* WORK */

int cnt = ((struct delay *)DATA(Node))->delay--;

if (cnt) {

((struct delay *)DATA(Node))->delay = cnt;

return;

}

4 Minor Issues

4.1 Modules

Teckel consists of modules, each consisting of a header file (.h) and a code file
(.c).

CDC – 4 September 21, 2014

4.2 Header files including header files

The header file contains declarations for all items the code file defines, plus
all items provided by the module through #defines, f.e. #define True (1) in
Bool.h.

Fine-tuning parameters of a module go into the code file, f.e.
#define PAGE WIDTH 80 in print.c.

The proper forms of the modules is verified by calling the (non-trivial) Shell
script check ch.

The syntax.tab module is generated by bison and does not conform.

4.2 Header files including header files

In general header files should not include header files. If a header file H.h uses a
data type T that is defined in T.h, any code file that uses H.h almost certainly
also uses the type T and might as well explicitly include T.h, preferably before
H.h.

But there are exceptions. One is node.h ZZ
CRC.h ZZ

4.3 Temporary string buffers

The module memory.c provided a routine new string buffer(void) which
yielded a 256-byte transient buffer from a circular list of 20 buffers. Having
been bitten by such a string being passed as a parameter to a routine that used
up those 20 buffers and then used the parameter, the routine is now named
temp string buffer(void), and all routines that yield transient strings have
the syllable temp in them.

This has uncovered two further problem spots. The problematic transient
strings are now allocated through permanent string().

It would be possible to mark transient strings by some special type, for
example pointer to unsigned char. This would get us compiler help in using
transient strings consistently, but would probably require a lot of conversion
calls.

4.4 How to concatenate with sprintf()

The routine printf() is very convenient for printing formatted output; the
routine sprintf() is fat less convenient for producing formatted strings. The
reason is that the printer (whatever that is) concateretes the successive results
of the calls of printf(), but no such automatic mechanism is provided by
sprintf()

Two tricks suggest themselves. After

sprintf(buf, "text, %d", 42);

we can continue with

sprintf(buf + strlen(buf), ", next, %d", 24);

or with

sprintf(buf, "%s, next, %d", buf, 24);

to have printf("%s\n", buf) produce the concatenated result

CDC – 5 September 21, 2014

4.5 Down with while

text, 42, next, 24

Although the second method seems to work, it is scary, and it is probably safer
to stick with the first method.

4.5 Down with while

When writing a while statement it is easy to forget the statement to move to
the next item. Now this is not an error that easily goes unnoticed, but it is a
nuisance. It is probably better to use a for-statement wherever possible:

struct node *n;

for (n = start; n; n = RC(n)) {

rather than

struct node *n = start;

while (n) {

...

...

n = RC(n);

}

5 Documentation

� The presence of _ in the documentation is a nuisance because it makes it
harder to find identifier and file names. But changing them into \verb@@

constructions does not work since there are quite a lot of places where
\verb is not allowed. We therefore opt for the other extreme and do use
\verb to hide a _.

This means that to find names with in the documentation, one has to
search for _. The search scripts F tex and F all do that automatically.

CDC – 6 September 21, 2014

	Anti-aliasing
	Tree Access
	Local Field Access
	Samples

	Minor Issues
	Modules
	Header files including header files
	Temporary string buffers
	How to concatenate with sprintf()
	Down with while

	Documentation

