
Similarity Percentage Computation in SIM

Dick Grune
dick@dickgrune.com

May 18, 2016

1 Introduction

The similarity testing facility of sim has been working satisfactorily since its
inception in 1986, but the computation of similarity percentages, introduced in
2001, has been a continuous source of headache.

There seem to be two reasons for this. The first is that there is no clear
definition of the notion “similarity percentage”. The second is that all attempts
to obtain similarity percentages have resulted in nonsensical results (often per-
centages far exceeding 100%), or have required quadratic time, or sometimes
both. Quadratic time requirements are unacceptable because they make sim un-
suitable for large-scale text comparisons like plagiarism detection, one of sim’s
largest application areas.

2 The Definition of “Similarity Percentage”

Normally sim supplies the information

Files F1 and F2 have matches (T1,1, T1,2), (T2,1, T2,2), ..., (Tk,1, Tk,2)

where the text segments T -s in the matches have the form (F, p, l), designating
the text in file F , starting at position p with length l, if we view a file as an array
of tokens. The matches have the following properties (assuming a minimum run
length of 1):

• For any match ((F1, p1, l1), (F2, p2, l2)) we have l1 = l2 and F1[p1..p1+l1] =
F2[p2..p2 + l2] (i.e. a match matches equal segments).

• For each token F1[a] for which there is a token F2[b] such that F1[a] =
F2[b], there is a match ((F1, p1, l1), (F2, p2, l2)) such that p1 ≤ a < p1 + l1
and p2 ≤ b < p2 + l2 (i.e. if two files have a token in common, it is present
in a match).

• The segments T1,1, T2,1, ..., Tk,1 do not overlap. (This does not apply to
T1,2, T2,2, ..., Tk,2.)

• If there is a match ((F1, p1, l1), (F2, p2, l2)) there are no matches ((F1, p1 +
l1, ...), (F2, ..., ...)) or ((F1, p1 − l, l), (F2, ..., ...)) (i.e. no match could be
extended on either end, i.e. each match is maximal in length).

1

This information is well-defined and unambiguous. It is produced by sim in
almost linear time.

Unfortunately this information does not reasonably extend to something like

Files F1 and F2 have N% material in common.

One is tempted to conclude that F1 and F2 have material of length l1+ l2 +... +
lk in common, but l1 + l2 +... + lk can easily be larger than F1 or F2, resulting
in similarities of over 100%. This can, f.e., happen when F1 = BB and F2 = B,
where B is a block of text with length lB . Then the matches found between
the two files are ((F1, 0, lB), (F2, 0, lB)) and ((F1, lB , lB), (F2, 0, lB)). So the two
files have a common length of lB + lB = 2lB , which gives F2 (with length lB) a
similarity percentage of 200%.

A more fundamental approach to similarity is needed. The fullest and clear-
est representation of what an N -token file F1 and an M -token file F2 have in
common is an N×M Boolean correlation matrix C with C[n,m] = True if
F1[n] = F2[m] and C[n,m] = False elsewhere.

Suppose F1="a b c d e f g h i j" (length = 10) and F2="f g h v w

x y z a b c d e" (length = 13). Then the correlation matrix C is
F2

f g h v w x y z a b c d e
a +
b +
c +
d +

F1 e +
f +
g +
h +
i
j

If we project the pluses onto the top and left axes, we get an indication of
how much material F1 can be found in F2 and vice versa:

F2

f g h v w x y z a b c d e
* * * * * * * *

a * +
b * +
c * +
d * +

F1 e * +
f * +
g * +
h * +
i
j

From this representation we see that

F1 consists for 8/10 = 80.0% of F2 material
F2 consists for 8/13 = 61.5% of F1 material

2

It is this information that sim tries – and frequently fails – to provide.

3 The Comparison Machine

To see how this information can be obtained by sim or why it cannot, we have
to have a closer look at sim’s comparison machine.

Sim cannot use the N×M matrix. Its size is quadratic in the number of
tokens in the combined files to be compared, which would restrict the total
number of tokens to 100.000 at the utmost. Instead it uses a linear array of
tokens, with some additional data, as follows.

3.1 The Algorithm

The comparison machine (the routine lcs() in compare.c) uses two indexes
into T : i0 and i1. The index i0 steps through the array, and for each position
the index i1 is used to hunt for the match ((F1, i0, l), (F2, i1, l)) with largest l
and i0 < i1.

The skeleton algorithm is

i0 := 0;

WHILE i0 < end_of_text

i1 := 0;

WHILE i1 < end_of_text

IF T[i0] = T[i1]

find longest match starting from(i0, i1)

IF longer than previous longest match starting from(i0)

store as longest match starting from(i0)

i1 := i1 + 1

IF there is a longest match starting from(i0)

i0 := i0 + length of longest match starting from(i0)

ELSE

i0 := i0 + 1

In short, the inner loop finds long matches; the outer loop finds the longest of
these long matches.

Suppose we have two files F1 ="abcdefabc" and F2 ="fabcdef"; the algo-
rithm then identifies the matches

((F1, 0, 6), (F2, 1, 6)) (matching "abcdef"),
((F1, 6, 3), (F2, 1, 3)) (matching "abc").

If the files had been offered in the reverse order, the matches would have been

((F2, 0, 4), (F1, 5, 4)) (matching "fabc"),
((F2, 4, 3), (F1, 3, 3)) (matching "def"),

which shows that the results of the comparison algorithm are sensitive to the
order in which the files are presented.

3

3.2 Details of the Increments

Even after finding a match in the inner loop, i1 should only be incremented
by 1, since right after a good match a better match may be found. Suppose
F1="aaabcd" and F2="aaaabcd". With i0=0 and i1=7 (just at the beginning
of F2) we find the match

((F1, 0, 3), (F2, 0, 3)) (matching "aaa"),

but with i1=8 we find

((F1, 0, 6), (F2, 1, 6)) (matching "aaabcd"),

which is a better match starting at i0=0.
When a longest match is found in the outer loop, i0 must be increased by

the length of that match, to avoid repetitive matches. Suppose we have one file
F="aaaaaaaa". Then the first match will be

((F, 0, 4), (F, 4, 4)) (matching "aaaa").

When we increase i0 in steps of 1, the rest of the matches will be

((F, 1, 3), (F, 4, 3)) (matching "aaa"),
((F, 2, 3), (F, 5, 3)) (matching "aaa"),
((F, 3, 2), (F, 5, 2)) (matching "aa"),
((F, 4, 2), (F, 6, 2)) (matching "aa"),
((F, 5, 1), (F, 6, 1)) (matching "a"),
((F, 6, 1), (F, 7, 1)) (matching "a"),

for a total of O(N) matches, many of them repeating earlier information.
If, however, we increase i0 by the length of the match found, the rest of the

matches are

((F, 4, 2), (F, 6, 2)) (matching "aa"),
((F, 6, 1), (F, 7, 1)) (matching "a"),

for a total of O(logN) matches, all informative.
The actual algorithm has many other features: establishing a minimum

match length, options for avoiding to compare a file to itself, etc. There is
one important optimization, concerned with incrementing i1. Incrementing i1

by 1 makes the algorithm quadratic in the number of tokens, which is unaccept-
able. We have seen, however, that sometimes increasing by 1 is necessary. The
problem is heuristically solved by having an array Forward Reference[], which
for each position in the token array gives the index of the nearest larger position
in the token array where matching text of at least the minimum required length
can be found. This array is constructed in linear time by a prescan, using hash-
ing extensively. Rather than incrementing i1 by 1 when looking for the next
match, i1 is set to Forward Reference[i1].

In principle using this forward references array does not take away the
quadratic component, but it multiplies it by φ, the density of the similarities.
And since we usually have φ � 1, this optimization makes sim usable. The
linear component of course remains.

4

4 Problems and their Causes

The arrangement described above is not directly suitable for percentage com-
putation, for three reasons.

1. The contents of Fk are explained in terms of matches with files Fk+1, ..., Fn;
matches from F1, ..., Fk−1 are not noticed.

2. Not all matches in Fk+1, ..., Fn are noticed.

3. Only a single match for a block at a given position in Fk is reported; other
lesser matches or equal matches further on are not noticed.

Each of these problems will now be considered in turn.

4.1 Ignoring Earlier Files

Earlier files are ignored because the Forward Reference array is exactly that,
it references forward. Normally this is not a problem, since any similarities
between Fk and an earlier Fp (with 1 ≤ p ≤ k − 1) will be have been noted
when Fp was analyzed.

One may be tempted to try to deduce the contribution of a file Fp (1 ≤ p ≤
k − 1) to Fk from matches of the form ((Fp, ,), (Fk, ,)), but that is not possible.
Suppose Fp = BaBBc and Fk = aBc, where B is a block of text of size lB . The
algorithm provides us with the matches

((Fp, 0, lB), (Fk, 1, lB)) (matching B),
((Fp, lB , 1 + lB), (Fk, 0, 1 + lB)) (matching aB),
((Fp, lB + 1 + lB , lB + 1), (Fk, 1, lB + 1)) (matching Bc)

Note that in none of the matches the text in Fp overlaps.
These matches are perfect for determining the N in the statement “Fp con-

sists for N% of Fk material”: N = (lB +1+ lB + lB +1)/(lB +1+ lB + lB +1) =
(3lB+2)/(3lB+2) = 100%. But if we rely on these matches to compute the N in
the statement “Fk consists for N% of Fp material”, we arrive at the conclusion
that N = (lB +1+ lB + lB +1)/(lB +2) = (3lB +2)/(lB +2) ≈ 300%. It is clear
that this is caused by the overlap of the matches in Fk, but this example makes
it equally clear that it would be very difficult to disentangle such overlaps in
the general case.

4.2 Selectively Ignoring Later Files

When there are a number of files, say four, each containing somewhere an iden-
tical block of text B, say F1 = abBcd, F2 = efgB, F3 = Bhi, F4 = jklBmno
(where a..o are letters not occurring in B) sim produces the following three
matches

((F1, 2, lB), (F2, 3, lB)),
((F2, 3, lB), (F3, 0, lB)),
((F3, 0, lB), (F4, 3, lB))

producing a linear number of matches, which is very desirable for most appli-
cations. But it means that the matches

5

((F1, 2, lB), (F3, 0, lB)),
((F1, 2, lB), (F4, 3, lB)),
((F2, 3, lB), (F4, 3, lB))

are missed. So percentages between F1 and F2, F2 and F3, and F3 and F4 could
possibly be derived from these matches, but those between F1 and F2, F1 and
F4, and F2 and F4 cannot.

As we have noted before, the output of sim is sensitive to the order in which
the files are presented.

4.3 Ignoring Lesser Matches

Given the three files F1 = abBcd, F2 = efgB, F3 = bBhi, sim produces the
following two matches

((F1, 1, lB + 1), (F3, 0, lB + 1)), (matching bB)
((F2, 3, lB), (F3, 1, lB)), (matching B)

but the lesser match ((F1, 2, lB), (F2, 3, lB)), relating F1 to F2, is missed. This is
acceptable in similarity testing since theB in F2 is caught by ((F2, 3, lB), (F3, 1, lB)),
but for similarity percentage computation we need all matches.

5 Solutions

5.1 Accessing Earlier Files

There are at least two ways to obtain both matches of the form ((Fp, ,), (Fq, ,))
and of the form ((Fq, ,), (Fp, ,)) with p < q: modifying the order in which the
files are processed, and modifying the forward reference system.

5.1.1 Modifying the File Order

Running the entire program again with the order of the files reversed will provide
the missing ((Fq, ,), (Fp, ,)), at the expense of doubling the running time.

5.1.2 Modifying the Forward Referencing System

Each forward reference chain is particular to a specific string S of text, with |S|
the minimum required match length. The chain starts from the first occurrence
of S in the text array, then leads to one or more subsequent occurrences of S,
and ends in a NULL pointer at the last occurrence of S in the text array. When
at a position in Fp we start using the forward reference chain for say S, we
can reach only positions in Fq with q > p (not q ≥ p, since when computing
percentages a file is not compared to itself).

Now suppose the chain, rather than terminating with a NULL pointer at the
last occurrence of S, looped back to its beginning. Then when working on Fp

we do not stop at the last occurrence of S in the text array while hunting for S
but continue at the first occurrence of S in the text array, from where we may
access files Fq with q < p. This statistically doubles the length of the chain,
doubling the work of the comparison machine; but the effort in the preparation
of the text array is not doubled, as it would be if the program were run twice.

6

A circular list is an awkward data structure and requires careful program-
ming. During construction of a forward reference chain it can easily be made to
loop, by remembering where it started and then rather than terminating it with
a NULL pointer end it with a pointer to the starting point. When using the
chain, following it must stop when we reach the position from which we started
(which is certainly on the chain).

So the problem of how to access earlier files can be solved at the expense of
roughly doubling the run time.

5.2 Full Coverage of Later Files

The problem is caused by the original algorithm hunting for the largest match
in the rest of the files, whereas for percentage computation it should look for
any match in each of the other files separately.

The possibility of comparing each file with each other file separately has
already been provided by the -e option. Again this results in a quadratic time
requirement, and again we invoke the low density of actual matches to reduce
the weight of the problem.

The original algorithm produces the matches in a left-to-right largest match
order, to minimize the number of matches; for the percentage computation
we just want them all. Since the nature and number of matches depends on
the order in which they are identified, one might wonder if the left-to-right
largest match order may cause problems to percentage computation. Suppose
Fp="abcdxe" and Fq="abcdxxe", with a required minimum run length of 2.
The matches found are

abcdxe abcdxxe

abcdx abcdx

e e

with the result that Fq consists for 5/7 = 71.4% out of Fp material. The match
e is ignored because it does not have the required minimum length. If the files
were compared in the reverse order the following matches would be obtained

abcdxxe abcdxe

abcdx abcdx

xe xe

and Fq would consist for (5 + 2)/7 = 100% of Fp material
Considerations:

• The example is contrived and hinges on there being a minimum required
length and on multiply overlapping patterns. No examples seem to exist
without these ingredients.

• Multiply overlapping patterns do occur in practice, f.e. in lists of identi-
fiers or numbers, but these are usually not very informative and of little
interest.

• The algorithm for finding the maximum similarity percentage may con-
ceivably require exhaustive search and be exponential.

7

It seems reasonable to ignore this problem for the moment, and use the normal
sim matching algorithm in comparing one file to one file1.

5.3 Lesser Matches

Since lesser matches can only occur when three or more files are involved, using
the -e option solves this problem too, since it restricts all comparisons to two
files only.

6 Conclusion

Using circular forward reference chains and the -e-option, correct similarity
percentages can be obtained; the algorithm has a moderate quadratic component
though.

A compromise can be obtained by omitting the -e option, which is the great-
est source of quadratic behaviour, and use circular forward reference chains only.
This makes the algorithm almost linear again, but will underreport percentages.

1The problem did show up in test runs, manifesting itself by minor differences in the
percentages depending on the order of the input files, but went away when the run length was
set to 1.

8

