
Two-Way Stack Automata and the

Ginsburg, Greibach, and Harrison Compiler

Dick Grune
dick@dickgrune.com

May 1, 2012

1 Introduction

Basically, a compiler consists of a lexical part, a syntactic part, and a semantic part. Each has a
theoretical foundation and a practical representation:

component foundation representation
lexical finite state automaton regular expressions
syntactic push-down automaton grammars

semantic ?
attribute grammars,
ad-hoc programming

The hegemony of the finite state automaton and the push-down automaton is unchallenged, but
there is no obvious candidate for the automaton in the box with the question mark, although
there are several contenders. In their paper Stack Automata and Compiling1 (abbreviated here
SAaC), Ginsburg, Greibach, and Harrison propose for that role the “stack automaton”, more in
particular the “two-way deterministic stack automaton”, abbreviated here as 2SA.

In SAaC the authors claim that “many of the most sophisticated sets that have been intensively
studied with respect to programming language theory are covered by the new model”. The purpose
of this text is to test that claim. If true, the 2SA has the advantage of probably being the simplest
automaton capable of the job.

SAaC is a mathematically very complex paper, and contributes little to the practical un-
derstanding of the 2SA. The paper shows, however, how a compiler running on the 2SA could
conceivably consult the symbol table of an Algol program. So a subgoal of this paper will be to
learn to program the 2SA, and to try to obtain an understandable program for the 2SA which
produces the example of Figure 1 in SAaC .

We first discuss the automaton itself and show that it can recognize recursive sets. Next we
consider the commands we can give to the machine, and design a very simple but convenient
programming language for it, embedded in C. Finally we survey the practical possibilities of the
2SA. In this survey we sketch algorithms to recognize some of the well-known non-CF sets; present
three complete programs for the 2SA, one of which produces the example of Figure 1 in SAaC ;
sketch a program to do sort or sort-unique of strings of arbitrary length; and show how a calling
graph can be build.

1.1 The 2SA

The 2SA is a push-down automaton with three extensions:

� the automaton can read the input forward and backward in steps of one position, and change
direction at any moment;

1J. ACM, 14(1967)1, 172-201

1

1.2 How to use a 2SA 1 INTRODUCTION

� the stack pointer, which in a push-down automaton always points to the top of the stack,
can move to lower regions of the stack, where it can read, but not write;

� at each cycle the 2SA can output one or more symbols: it can perform a “transduction”
from input to output (this feature is also sometimes available in push-down automata).

Since SAaC may not be easily accessible to everybody, we list here the most important par-
ticulars of the 2SA proposed there:

� Both the stack pointer and the input pointer point between symbols; the stack pointer
addresses the symbol on its left, the input pointer addresses the symbol on its right.

� The input pointer can be positioned before the first input symbol and after the last; it cannot
access the empty place after the last symbol.

� Modifying the stack is done with a single instruction, which replaces a single symbol Z on
the top of the stack by a word of symbols w of length 0 or more. It requires the stack pointer
to point to the top of the stack, and leaves it pointing to the new top of the stack. There
are no separate push or pop instructions.

� Successful termination requires the input pointer to be positioned after the last input symbol.

The inspectable stack allows the 2SA to gather and store information about the input on the
stack and then compare it to other segments further on in the input; this allows context checking.

The 2-way movable head allows the context checking to be performed random-access over the
input; it also allows information to be discarded from the stack and to be reconstructed later.
Fig. 1 inSAaC suggests that code generation should be possible as well.

1.2 How to use a 2SA

The two paragraphs above suggest some ways of using a 2SA to implement the semantics and
context checking of a compiler, but when one tries to make these ideas more concrete, the view
becomes murky soon.

SAaC gives an example of consulting a symbol table on the stack, but upon scrutiny it raises
more questions than it answers:

� Where does the R0 in line t37 suddenly come from? The type symbol R0 was seen in line
t20, disappears in lines t21 to t36 (partly not shown), and then reappears in line t37.

� How does one handle more than one variable of the same type? In the example each vari-
able is identified by a specific symbol, optimistically numbered 0, but if the input program
contains N real variables, we cannot have N different symbols R0...RN−1, for unbounded
N . So each has to get a number, and that number cannot be put in the state, since it is
unbounded.

� How does one handle block structure and other syntactic structure? No doubt the compiler
running on the 2SA machine has all kinds of subroutines, for handling declarations, expres-
sions, etc. Although much of this can be hidden in the state (see Section 3.3), at least the
parsing of expressions will need to put subroutine return information on the stack. None of
this is visible in the example, which allows assignments of the form <idf> := <idf> only.

In other words, the example is simplified below the level of being convincing, and other means are
needed to convince ourselves of the suitability of the 2SA.

More in particular, checking context requires writable memory at least proportional in size to
the input, to store information for later reference. But the 2SA is really cramped for such memory:
it has an input pointer, of limited size; and a stack, unbounded indeed, but writable only at one
end. So the main question will be “Where do we put the info?”.

2SA – 2 May 1, 2012

2 PROOF OF POWER

The text of SAaC is of some help in this respect: it proves that the 2SA is capable of recognizing
recursive sets, and since the Algol programs (or programs in any programming languages, for that
matter) form a recursive set, the 2SA is, in principle, capable of recognizing Algol programs. (The
set of syntactically and contextually correct Algol programs is a recursive set, since there is a
decision procedure to see if a string is in that set: the Algol compiler. The set of dynamically
correct Algol programs is not a recursive set.)

We will first look at the proof, then see how the 2SA can be programmed more or less conve-
niently, and finally show some programs of increasing complexity to run on the 2SA, one of which
produces the sample run from SAaC .

2 Proof of Power

SAaC proves that a 2SA can recognize recursive sets by implementing a “linear bounded automa-
ton” in it (Theorem 3.1 on page 186), and assumes recognition by a linear bounded automaton
as a definition of recursive sets. Since we are examining the suitability of the 2SAs for compiler
construction, we will take recognition by a context-sensitive (CS) grammar as the definition of
recursive sets. We will first discuss a simple deterministic recognizer for CS languages, and then
show how to implement it on a 2SA.

Needless to say, this will not result in a practical compiler for even the simplest programming
language, for three reasons: a CS grammar is a clumsy and unwieldy object; ac ompiler is much
more than a recognizer; and the implementation of it on a 2SA is extremely cumbersome and
inefficient. But for a proof of power it will (have to) suffice.

2.1 A simple deterministic recognizer for CS languages

CS languages are produced by CS grammars, and a CS grammar is a formal grammar with
rewriting rules of the form P → Q where P cannot be longer than Q. So aB → Ba is OK, but
aB → B is not.

This restriction that no production rule can make the intermediate form shorter gives us
immediately a trivial recognizer for CS languages. Given a CS grammar and an input w of length
k, produce all intermediate forms of length k; if at least one equals w, w is in the language. If
none does, w is not in the language: continuing with longer intermediate forms is pointless, since
they will never get shorter again.

2.1.1 The basic recognizer

We will use a slightly more intelligent recognizer. This recognizer starts with the word w, and
scans it from left to right until it finds the right-hand side of a rule from the grammar. It then
replaces this right-hand side by the left-hand side of the rule. If the left-hand side is smaller than
the right-hand side, the recognizer pulls up the rest of the input word; if it is the same size it does
nothing; and it cannot be larger. Finally it moves to the left far enough not to miss any matching
possibilities that might have arisen through the replacement, and continues its recognition process
until no more matches are found. If by doing so it reduces the input word to the start symbol of
the grammar, w was in the language; otherwise it was not.

This rough explanation glosses over several questions: how to find a match; what to do if there
are multiple matches; and what to do if more than one rule has the same right-hand side. And of
course we want answers to these questions that are compliant with the austere memory supply of
the 2SA.

Matching all right-hand sides of all grammar rules can be done in parallel by keeping a counter
for each right-hand side indicating how much of it has been matched up to here; since there are
a finite number of rules and a finite number of positions in their right-hand sides, this requires
a finite amount of memory, which can be stored in a single state. This is in fact a finite-state
recognizer, as used in the compiler construction programs lex and flex, in virus scanners, etc.

2SA – 3 May 1, 2012

2.1 A simple deterministic recognizer for CS languages2 PROOF OF POWER

This information is, however, invalidated by a replacement action. There are two options here:
go back to the beginning of the input and reconstruct the information; or attach the information
to each position in the input.

2.1.2 Making it deterministic

The multiple matches and rules with the same right-hand sides are actually the same problem.
Again there are two solutions: non-deterministically, by copying a recognizer for each possibil-
ity; and deterministically, by backtracking search. Since a non-deterministic compiler is very
unsatisfactory, we have to go for the deterministic solution.

When multiple courses of action present themselves – and these do include the choice to not
recognize anything in the present position and search on elsewhere – the choices are put in a list
attached at the input position; the first choice is marked as done; its replacement is performed; and
the search continues. Now if the recognizer reaches the end of the input without having reduced
it to the start symbol, it moves to the left to find the first symbol marked with an unfinished
list of choices. The latest replacement is undone, the next choice in the list is marked done, its
replacement is performed, etc. This implements full backtracking search.

Again a problem has been glossed over: how to do the undoing. This is a problem since unlike
a replacement, undoing a replacement can require more room in the input than is available. This
is the case if the right-hand side is longer than the left-hand side.

Two solutions are possible: a difficult one, and a clumsy one. In the difficult one, we push the
rest of the input to the right to make room. In the clumsy one, when replacing a longer string by
a smaller, we mark the positions left empty by a special symbol, “void”. Then when undoing the
replacement the room will still be there. Such void symbols will have to be skipped by all other
operations. It is clear that both can be implemented with at most O(|w|) memory.

2.1.3 An example

The recognition of the word aaabbbcc can serve as an example. It is generated by the CS grammar
G1:

1. S → abc
2. S → aSQ (generate anabcQn for n ≥ 0)
3. cQ → Qc (move Qs to the left towards the last b)
4. bQc → bbcc (change Q into bc upon arrival)

which generates the language anbncn for n ≥ 1 (when all Qs are gone the result is anabbncnc, n ≥ 0,
which is equal to anbncn, n ≥ 1). The word aaabbbccc is recognized in the following steps:

aaab[bbcc]c (rule 4) →
aaabb[Qc]c (rule 3) →
aaabbc[Qc] (rule 3) →
aaa[bbcc]Q (rule 4) →
aaab[Qc]Q (rule 3) →
aa[abc]QQ (rule 1) →
a[aSQ]Q (rule 2) →
[aSQ] (rule 2) →
S

where the segment between the brackets shows the matching right-hand side. So, using B as a
separator, the word

BaaabbbcccBaaabbQccBaaabbcQcBaaabbccQBaaabQcQBaaabcQQBaaSQQBaSQBSB

is proof that aaabbbccc is a word in the language generated by G1.

2SA – 4 May 1, 2012

2.2 Copying a stack segment on the 2SA 2 PROOF OF POWER

2.2 Copying a stack segment on the 2SA

Implementing the above recognizer is based on an algorithm to duplicate a segment of the entries
on the top of the stack to the top of the stack, provided that this segment is not longer than the
input; the remarkable thing is that the actual input is immaterial in the algorithm, just its length
matters. We follow the text of SAaC , page 188, here.

Suppose we have a word u = u1...uk on the top of the stack, demarcated by Bs, and an input
a1...am with k ≤ m, demarcated by ¢ and $:

Bu1...ukB��� ���¢a1...am$

Here ��� is the stack pointer, pointing to the symbol on its left, and ��� is the input pointer, pointing
to the symbol on its right, as in SAaC .

First we mark the top of the stack by a special symbol, B′, by pushing it on the stack:

Bu1u2...ukBB′��� ���¢a1...am$

(Officially we have to replace B by BB′, since the 2SA as described inSAaC allows only the
replacement of a symbol Z on top of the stack by a possibly empty word w, but we will allow also
simply pushing and popping.)

Now we move the stack pointer to the left, to the second B, and one step to the right. This
positions it pointing to u1:

Bu1���u2...ukBB′ ���¢a1...am$

and we are ready for the first round of the main loop of our copying operation.
Suppose we have already copied u1...ui−1, and the stack pointer points at ui (if the stack

pointer points at the separating B instead we have copied all of u and we are (almost) done; see
Start of
main loop

below):

Bu1u2...ui−1ui���ui+1...ukBu1...ui−1B
′ ���¢a1...am$

(for i = 1 we have the situation above). We absorb the symbol ui in the state of the 2SA, move
to the marker B′, deposit the symbol absorbed in the state (ui) to the left of it by replacing B′

by uiB
′, and move left over the B′:2

Bu1u2...ui−1uiui+1...ukBu1...ui−1ui���B′ ���¢a1...am$

Now we have copied ui, but we have also created a problem: how do we find ui+1? This is
where the input pointer comes in: we move simultaneously the stack pointer left and the input
pointer right until the stack pointer points at the B:

Bu1u2...ui−1uiui+1...ukBu1...ui−1ui���B′ ���¢a1...ai−1aiai+1...am$
Bu1u2...ui−1uiui+1...ukBu1...ui−1���uiB′ ¢���a1...ai−1aiai+1...am$
... ...
Bu1u2...ui−1uiui+1...ukBu1���...ui−1uiB′ ¢a1...���ai−1aiai+1...am$
Bu1u2...ui−1uiui+1...ukB���u1...ui−1uiB′ ¢a1...ai−1���aiai+1...am$

Now both the stack pointer and the input pointer have moved i positions, and i has been recorded
in the position of the input pointer. This can be done because the length of the stack segment
u is not larger than the length of the input string w. (Note that there is a one-off error in the
explanation on page 188 of SAaC : if one goes from tBuBV1...ViB

′��� to tBuB���V1...ViB′, the stack
pointer has moved i+ 1 positions, not i.)

Now the road ahead is clear: first we move the stack pointer to the left to the second B and
then right one position,3 all the time leaving the input pointer where it is. The stack pointer now
points to u1:

2see Note at end of section
3see Note at end of section

2SA – 5 May 1, 2012

2.3 Implementing the simple deterministic recognizer on the 2SA2 PROOF OF POWER

Bu1���u2...ui−1uiui+1...ukBu1...ui−1uiB
′ ¢a1...ai−1���aiai+1...am$

The last step is to move the input pointer left and the stack pointer right in tandem, until the
input pointer is back at the beginning:

Bu1���u2...ui−1uiui+1...ukBu1...ui−1uiB
′ ¢a1...ai−1���aiai+1...am$

Bu1u2���...ui−1uiui+1...ukBu1...ui−1uiB
′ ¢a1...���ai−1aiai+1...am$

... ...
Bu1u2...ui−1ui���ui+1...ukBu1...ui−1uiB

′ ¢���a1...ai−1aiai+1...am$
Bu1u2...ui−1uiui+1���...ukBu1...ui−1uiB′ ���¢a1...ai−1aiai+1...am$

Since the input pointer has moved i positions, the stack pointer has too, and since it started at u1
it now points at ui+1. We now return to the start of the copy loop, marked in the margin above.

We continue to run this loop until we are about to copy the separating B:

Bu1u2...ui−1uiui+1...ukB���u1...ui−1uiui+1...ukB
′ ���¢a1...ai−1aiai+1...am$

Then we change the auxiliary marker B′ to B:

Bu1...ukB���u1...ukB ���¢a1...am$

and the job is done! The whole process can be viewed in detail in Appendix B in the Appendix
file.

Note: A slightly more elegant algorithm is obtained by omitting the left move of the stack
pointer over B′ just after the replacement of B′ by uiB

′; both stack and input pointers then move
i+ 1 positions. This allows omitting the corresponding right move of the stack pointer to position
it at u1 above; it stays at B (virtually u0) and the subsequent move over i+ 1 positions brings it
to ui+1.

The algorithm is more elegant for several reasons:

� it avoids useless moves;

� the transition from i to i+ 1 occurs automatically and naturally by stacking the copied ui;

� the algorithm works correctly as long as |u| ≤ |a| (or k ≤ m) rather than as long as |u| ≤
|a|+ 1.

2.3 Implementing the simple deterministic recognizer on the 2SA

Recognition occurs by rewriting the input string. Since the 2SA cannot modify the input, we first
transfer the input a1...am to the stack, properly demarcated:

Ba1...amB��� ���¢a1...am$

Using the algorithm from Section 2.2 we copy a1...ai until we find a right-hand side of a grammar
rule, say A1...Ap → B1...Bq, with p ≤ q. We now back up q places, remove ai−q+1...ai = B1...Bq

from the copy, copy in A1...Ap instead:

Ba1...amBa1...ai−qA1...Apai+1...amB′��� ���¢a1...am$

and continue our algorithm. This possible because the length of the segment to be copied cannot
be increased by the replacement.

Continuing this way, we produce on the stack a proof that a1...am belongs to the language, by
reducing it to the start symbol S in the same way as shown at the end of Section 2.1:

Ba1...amBa1...ai−qA1...Apai+1...amB ... Ba1Q1amBSB���

2SA – 6 May 1, 2012

3 A CONTROL LANGUAGE FOR THE 2SA

All this is a lot easier said than done: recognizing the right-hand side requires a finite-state
automaton embedded in the state space of the 2SA; the backing up and subsequent insertion of a
different string confuses both the copy and the recognition mechanism; and multiple matches must
still be handled by full backtracking search. It is true that the authors avoid the complication of
the changing length in the replacement of ai−q+1...ai by A1...Ap when p < q, by using a “linear
bounded automaton” rather than a CS grammar to characterize the recursive sets, but enough
trouble remains.

The accumulation of complications leads to what SAaC calls: “quite formidable mathematical
constructions” (page 173), and the bulk of the paper is dedicated to mastering them. The amount
of detail is overwhelming, and one can only feel considerable admiration for the authors for having
been able to pull it off.

The above describes a parser and context checker, but a compiler is more than that: it usually
maintains complicated data structures, and it is far from clear how to manage them in the confines
of a 2SA. So for the moment it is still to be seen if the authors ofSAaC were justified in using
“Stack Automata” and “Compiling” in the same title.

3 A Control Language for the 2SA

As a computer, the 2SA leaves much to be desired. It has two variables, the input pointer and
the stack pointer, and two memory units: the input, readable everywhere and unwritable; and
the stack, readable everywhere and writable at one end. Its only instruction is the “transition”,
described by an 8-parameter δ function

δ(q, a, Z) = (d, q′, e, w,Ω),

where q is the old state; a is the symbol to the right of the input pointer; Z is the symbol to the
left of the stack pointer; d is the input pointer movement (left, right, or none); q′ is the new state;
e is the stack pointer movement (left, right, or none); w is the replacement for the top element of
the stack; and Ω is the output. We shall call the part before the = sign the “condition”; the part
after it the “action”; and the whole a “rule”.

There is quite a distance between this model and a reasonably usable coding language:

� the machine lacks all structure: no grouping mechanism is available, or even suggests itself;

� the algorithm in Section 2.2 shows that the state will play a complex role, but the 2SA’s state
space is just a set of unstructured symbols, with one operation only: testing for equality;

� there are no subroutines and no parameters;

� many conditions may lead to the same action; as it stand, they all have to be specified
separately;

� the condition-action paradigm provides an if ... then but there is no else, often requiring
many rules to specify a default;

� the definition of the 2SA requires the specification of a rewrite of the top of the stack on
each and every transition, which is unnatural and very inconvenient.

Based on the requirements of the 2SA and considerations of ease of coding and ease of imple-
menting, the following design was chosen.

3.1 The coding language

Programs for the 2SA are written in restricted C and a macro-supported subset of C. For example,
a rule

δ(q, a, Z) = (0, q′,−1, w,X)

2SA – 7 May 1, 2012

3.1 The coding language 3 A CONTROL LANGUAGE FOR THE 2SA

is coded as

State (q) {

Rule(IP_at(a) && SP_at(Z),

(IP_left(), replace(Z, w), output(X), go_to(q’)));

}

where State, Rule, IP_at, SP_at, IP_left, replace, output, and go_to are predefined C func-
tions or macros. The commands in the third line may be given in any order; the order presented
here seems the most natural one. Duplicate or conflicting commands are detected by the system
at run time, and result in an error message and termination of the program run.

2SA program commands

The 2SA is initialized by a call of init_stack_automaton().
The input is specified by calls of add_to_input(s), where s is the symbol to be added. The

standard input demarcators ¢ and $ are added by the system.
The stack normally starts with only its bottom symbol Z0 in place. For demonstration pur-

poses a specific stack can be specified by calls of add_to_stack(s); if this happens, the input
demarcators ¢ and $ are no longer supplied by the system.

The 2SA is started by a call of start_stack_automaton(q0), where q0 is the start state; for
further details see the example files. It is terminated by a call of go_to(qF), where qF is one of
the built-in final states OK (for successful termination) and KO (for failure). When terminating in
state KO, the output of the transition is interpreted as the error message. The requirement that
the input pointer be positioned to the right of the last input symbol (SAaC , p. 179) for successful
termination is not enforced.

2SA program structure

A program for the 2SA consists of a set of declarations of user symbols and variables (see Sections
3.2 and 3.7), the separator BEGIN_CODE, a sequence of state definitions like the one above, and the
terminator END_CODE.

A minimal 2SA program might be

#include "stack_aut.h"

static Symbol Smiley = "\\smiley";

int main(void) {

init_stack_automaton();

add_to_input(Smiley);

start_stack_automaton(hello_1);

return 0;

}

/* there is no user state */

int user_state_has_changed(void) {return 0;}

void print_user_state(void) {}

BEGIN_CODE

State(hello_1) {

Rule(otherwise,

(IP_right(), output("Hello world%s", Smiley), go_to(OK)));

}

END_CODE

2SA – 8 May 1, 2012

3.2 State 3 A CONTROL LANGUAGE FOR THE 2SA

It gives the output

t0 1 Z0��� ���¢,$
t1 OK Z0��� ¢���,$ Hello world,

See the example files *.c and the Makefile for more detail.

3.2 State

In principle the state of an automaton corresponds to the instruction pointer of a CPU, but the
example in Section 2.2 shows that symbols are absorbed in the state and can be retrieved from it.
The nature and structure of these “user states” are different for each program.

For these reasons the state of the 2SA has been split in two parts: the “control state” of the
2SA, implemented as the address of the code segment to be performed for that state; and the
“user state”, implemented as zero or more C variables.

User state variables must be of types with finite domains, for example Booleans, enumeration
types and Symbols (see Section 3.7). But finite-range integers would also be acceptable, since
there are only a finite number of operations on a finite number of operands with a finite number
of results, so everything can be lawfully encoded in a finite set of states.

The user states can be used in the condition of the Rule command for testing, just like the
input and stack pointers. And they can be set in the action part. All user variable handling is
through C expressions.

The user has to supply two routines in connection with user states,
int user_state_has_changed(void), which should return 1 if any user state was changed in
the latest transition, and 0 otherwise; and void print_user_state(void), which should print
the user state(s) without surrounding layout.

All condition-action rules with the same control state must be collected in a single State

command in the code. An example is

State (q) {

Rule(IP_at(a) && SP_at(Z),

(IP_left(), replace(Z, w), output(X), go_to(q’)));

Rule(IP_at(Real_type) && type == 0,

(IP_right(), type = Real_type, go_to(type_found_1)));

}

where type is a user state variable of type Symbol and Real_type is a user-defined constant of
that type.

3.3 Subroutines

Subroutines are used in programming for two purposes: as a structuring device, and for recursion.
A structured compiler algorithm for the assignment in Fig. 1 in SAaC could be

void assignment(void) {

identifier();

look_up_idf();

becomes_symbol();

identifier();

look_up_idf();

code_assignment();

return;

}

which is greatly preferable to writing out all the specific instructions.
When used for structuring without recursion, the number of possible sequences of calls is

bounded by ΣP
i=1i!, where P is the number of subroutines in the program. This is a finite number,

so all static stacks can be incorporated in the state of the 2SA.

2SA – 9 May 1, 2012

3.4 Replication 3 A CONTROL LANGUAGE FOR THE 2SA

Static stacks are made available with the commands call_sub and end_sub. A call of
call_sub(q, q1) stacks the state q1 for later use and sets the new state to q; a call of end_sub()
retrieves the most recently stacked state and makes it the new state. So call_sub(q, q1) can be
read as “first go to the subroutine that starts with state q, and when that subroutine is done
continue in state q1”.

With these routines the above C procedure is coded as

State(assignment_1) {

call_sub(identifier_1, assignment_2);

}

State(assignment_2) {

call_sub(look_up_idf_1, assignment_3);

}

...

State(assignment_6) {

call_sub(code_assignment_1, assignment_7);

}

State(assignment_7) {

end_sub();

}

where the trailing numbers are positions in the subroutine.
The maximum static depth in controlled by the setting of MAX_STATIC_STACK_SIZE in the file

stack_aut.h.
Subroutines used for recursion are a different matter altogether. Recursion can have unlimited

depth, so it cannot be accommodated in the state, but must be stored on the stack. This requires
the conversion from state to stack symbol(s) and vice versa. Since it is not required for producing
Fig. 1 of SAaC , this feature has not been implemented.

As an aside, it can be noted that in producing the initial stack shown in Fig. 1, the compiler
must have made several recursive calls, for example due to the recursive nature of blocks in Algol,
but there is no trace of them in the figure.

3.4 Replication

There is no other way of accessing the symbols in the input and on the stack than by supplying
them in the condition part of a rule, where they will be compared by the system. So picking up
the type in line t20 in Fig. 1 requires a rule for each possible type:

State(look_up_idf_6) {

/* identifier found */

Rule(SP_at(Real_type),

/* add type to state */

(type = Real_type, go_to(look_up_idf_7)));

Rule(SP_at(Integer_type),

/* add type to state */

(type = Integer_type, go_to(look_up_idf_7)));

Rule(SP_at(Boolean_type),

/* add type to state */

(type = Boolean_type, go_to(look_up_idf_7)));

}

and the situation is (much) worse when comparing letters.
Such symbols come in sets, and could be declared as follows:

static Symbol types[] = {"R_0", "I_0", "B_0", 0};

A set declared this way can then be used in a For_All command:

2SA – 10 May 1, 2012

3.5 Specifying defaults 3 A CONTROL LANGUAGE FOR THE 2SA

State(look_up_idf_6) {

/* identifier found */

Symbol t;

For_All (t, types) {

Rule(SP_at(t),

/* add type to state */

(type = t, go_to(look_up_idf_7)));

}

}

3.5 Specifying defaults

A convenient feature of imperative programming is that in a sequence

if A then X else if B then Y else if ...

subsequent conditions are only considered if all previous conditions failed. Guarded commands, in
which the conditions are evaluated concurrently and an error or non-determinism occurs if more
than one condition applies, have never become popular, Dijkstra notwithstanding, since they often
require kludges like

if A then X ; if not A and B then Y ; ...

The 2SA presents a guarded command model, but in principle overlapping guards cannot occur:
there are only three things to condition on: state, input symbol, and stack symbol, and each rule
checks all three. But in coding we meet situations in which we want to do one thing if there is
a certain symbol under the stack pointer, regardless of the input, but another, dependent on the
input, otherwise. The traditional if-then-else if construction does this naturally, but the guarded
command construction does not.

For convenience of coding the rules are applied in textual order: the first one that matches is
taken, and the remainder is ignored. So the above example can be coded as

Rule(SP_at(X),

(....));

Rule(IP_at(Y),

(....));

The condition otherwise can be used to catch all conditions not covered by the preceding rules.
If no rule applies at run time, the 2SA gives an error message, and stops.

3.6 Pointless rewriting of the stack

The official definition requires a stack rewrite to be specified on each and every move: δ(q, a, Z) =
(d, q′, e, w,Ω), where the symbol Z is on the top of the stack, and is rewritten to the string w.
When w = Z the write operation is not performed (SAaC , bottom of page 177), but Z must still
be specified. This is very inconvenient.

The requirement for a stack overwrite rather than a stack write also makes it impossible to
just push a string w: one has to tell the machine to erase Z and to push Zw, where Z is the
symbol on top of the stack. This is very inconvenient when Z is immaterial or when the entry is
applicable with several different symbols on the top of the stack.

Rewriting the stack is specified with the command replace(Z,w). If Z is a symbol, it has to
be equal to the top of the stack; it is then popped from the stack, and the string w is pushed on
the stack. If Z is 0, the symbol string w is just pushed on the stack. Routines are available for
making strings out of lists of symbols.

2SA – 11 May 1, 2012

3.7 Symbols 3 A CONTROL LANGUAGE FOR THE 2SA

3.7 Symbols

Symbols in an automaton are in principle nominal values, since the only operations defined on them
are copying and comparison for equality. For coding we also want to print them conveniently, and
for this purpose the type Symbol has been defined as pointer to an read-only string: const char *;
the string should be amenable to LATEX math mode processing.

The symbols used by the 2SA are defined in the first section of the program as named Symbols,
for example

static Symbol End_of_decls = "Z_1";

static Symbol Aux_marker = "Z_2";

static Symbol Begin_idf_decl = "\\#";

static Symbol End_idf_decl = "\\beta";

It is convenient to specify the string only once and for the rest use the symbolic name only; a
symbol is then identified by the string’s machine address, and can be compared simply with ==.
Named elements of symbol strings require some trickery:

static Symbol types[] = {"R_0", "I_0", "B_0", 0};

#define Real_type types[0]

#define Integer_type types[1]

#define Boolean_type types[2]

3.8 Output

Output from the 2SA is specified with the command output(fmt , s), where fmt is a printf

format, and s is a 2SA symbol.
Output from the program is a file of LATEX table entries, with one line for each 2SA transition,

in the following format:

t95 7, 20 I0 Z0R0#XY βI0#JKβB0#IKβZ1R0 := ��� ...;XY := JK���; ... LOAD I0

The columns show the time, the static state stack, the user state(s), the stack with pointer, the
input with pointer, and the output of the transition. The file can be typeset in the environment

\begin{longtable}{l l l l l l}

...

\end{longtable}

3.9 The implementation

The syntax of the coding language is implemented with one typedef and four macros:

typedef const char *Symbol;

#define State(st) static void st(void)

#define Rule(cond, action) {if (cond) {action; return;}}

#define For_All(s,ss) for (s = ss[0]; s; s = _next_For(s, ss))

#define otherwise (1)

It is the shortest compiler I have ever written.
The semantics of the coding language is implemented in the file stack_aut.c. The only

noteworthy item is the routine _next_For(s, ss), used in the for-loop in the For_All macro.
Whereas normal for-loops over a list manipulate a pointer in the list, this one manipulates the
elements in the list: it looks up the symbol s in the list ss and returns the next element. This
can be done reliably because the lists are actually sets and cannot contain duplicates (and if they
contain duplicates anyway, their addresses will differ).

2SA – 12 May 1, 2012

3.10 A meta-implementation 3 A CONTROL LANGUAGE FOR THE 2SA

3.10 A meta-implementation

The above trivial compiler generates code for a C-machine from a 2SA program, but purists
might demand code for the 2SA proper, i.e., a complete specification for the transition function
δ. Producing it seems possible, but would require considerable analysis.

� The state must be condensed into a single item (int or enum). The calling graph for the
states is actually a calling tree, so all paths can be enumerated; they form the new states. The
user states are represented by n Symbols. Each can be present in or absent from the state;
this gives 2n combinations, each of which is combined with each of the states enumerated
above.

� Conditions not stated explicitly in the rules but covered by the sequential application of the
rules must be determined, and pertinent rules generated for them. This can be done since
all symbols are known from the declaration section of the program.

When all this is done, probably some weeding out of inaccessible transitions will be possible.

3.11 Further developments

The following features would ease the programming of the 2SA considerably. They can, however,
not be implemented by a few simple macro definitions and require a (small) compiler.

3.11.1 Composite input and stack symbols

In all the above examples stack symbols are of the same data type as input symbols, but that need
not be so, nor does either need to be restricted to simple strings. The input symbols as supplied
by a lexical analyser are usually pairs of a string representation and a class representation. Stack
symbols could be very complex, as long as their set is finite; this may allow storing a lot of
(bounded) information in a few stack entries.

The system should differentiate between input symbols and stack symbols, and allow the user
to define both their types.

3.11.2 Compilation of static procedures

The transformation from

void assignment(void) {

identifier();

...

code_assignment();

return;

}

to

State(assignment_1) {

call_sub(identifier_1, assignment_2);

}

...

State(assignment_6) {

call_sub(code_assignment_1, assignment_7);

}

State(assignment_7) {

end_sub();

}

should be performed automatically.
With this feature present, the sort routine from Section 4.5 can be written almost completely

as a C program, with only the most primitive operations expressed in Rules and States.

2SA – 13 May 1, 2012

4 EXAMPLES OF 2SA PROGRAMS

3.11.3 Features for recursion

This requires routines in the following vein. One might be void call_proc(State s, State p),
which converts the control state p into one or more stack symbols, pushes them on the stack with
proper demarcation, and then go_tos to state s.

Another might be void end_proc(void), which retrieves the stacked control state from the
stack, and then go_tos to it.

Users will have to stack and retrieve user states where appropiate.

3.11.4 Better checking

Although it is very convenient for all symbols to be identified by their addresses, it is also error-
prone: "A" == "A" yields false. Checking this property is possible and would be worth-while.

4 Examples of 2SA programs

First we show how to recognize some well-known non-CF sets with a 2SA. This is followed by three
implemented 2SA programs, with their code. The code is in the present directory; the results are
in appendices in the file Appendix.pdf. The section is closed by sketches of a string sort program
and code to produce a calling graph in a compiler.

4.1 The usual suspects

The set anbncn is trivial to recognize: push an on the stack, scan bn while counting off as on the
stack, and repeat for cn.

The set ww is a bit more challenging, as is any matching in which the middle has to be found.
Shift through he input and for each pair of input symbols put one marker on the stack; from the
end back up, deleting a stack marker for each input symbol; shift right, copying the input symbols
to the stack; back up to the beginning, and check if the input consists of twice the stack contents.

Recognizing a2
n

is easy again: copy the input to the stack, demarcated by Bs, and using the
algorithm from Section 2.2 copy the stack to the top of the stack, skipping every second a; repeat
until failure. If this reduces the stack contents to BaB, the input was OK.

4.2 Checking integer multiplication

The first 2SA program checks the correctness of inputs of the form 1a × 1b = 1a×b.
First the multiplier (1a) is put on the stack as ∗a, and the input pointer is moved to the right

of the =-sign. We consider the invariant (a − S) × b = R, where S is the number of ∗s on the
stack, and R is the distance between the input pointer and the =-sign. At this point the invariant
holds: (a− a)× b = 0.

We now enter a loop in which we first unstack one ∗. This invalidates the invariant, and to
restore it we have to increase R by b, which we do as follows.

1. We move the input pointer left to the right of the =-sign, and for each 1 we move over, we
push one s on the stack, R in total.

2. We move the input pointer left to the right of the ×-sign, and for each 1 we move over, we
push one s on the stack, b in total. Now there are R+ b s-s on the stack.

3. We move the input pointer right to the right of the =-sign.

4. We pop all the s-s, and for each s popped we move the input pointer one position to the
right.

2SA – 14 May 1, 2012

4.3 Copying a stack segment 4 EXAMPLES OF 2SA PROGRAMS

Now the invariant has been restored, and there is one ∗ less on the stack.
When all ∗s are gone, S = 0, and the invariant reads a× b = R. If the input pointer is now at

the $, the input is OK; otherwise it is not.
The code is in the file mult.c; a sample output is in Appendix A.
The program does not use the full power of the 2SA: the interior of the stack is never examined.

This shows that the problem can also be solved on a 2-way push-down automaton.

4.3 Copying a stack segment

The stack segment copy operation described in Section 2.2. The code is in the file copy.c; a
sample output is in Appendix B.

4.4 Consulting the symbol table of an Algol program

The point of the entire exercise: reproducing Fig. 1 from SAaC . The code is in the file ggh.c;
the output is in Appendix C. It has 20% more transitions than Fig. 1; these are due to the state
changes from static routine calls and returns.

4.5 Sorting

One operation that is often used in programming is finding the next element in a list. Normally
this is implemented with a simple index or pointer, of which any programming language has an
unlimited supply. The 2SA, however, has only two pointers, each with restrictions. Processing an
element usually requires both these pointers, so when the processing of that element is over, its
position is lost. And without that position we cannot find its successor.

The remedy is to process the elements in some testable order, keeping the element being
processed in an identifiable place on the stack. When the next element is required, we stack a
“sentinel”, an element larger than any in the list; now the stack has ...e1...e2, where e1 is the
old element and e2 is the sentinel. We scan the list, which is assumed to reside in the input, for
pertinent elements, and each time when we find an element e3 such that e1 < e3 < e2, we unstack
the top element e2 and stack e3 instead. When we reach the end of the list in the input, the top
element will be the next element after e1, or, if the sentinel is still there, we have exhausted the
list.

As an application of this technique and as an example of a “real” application, we will now sketch
a sort program, which accepts a list of words separated by spaces () as input, and outputs the
words in lexicographical order. So for the input who laughs last laughs best4 it produces the
output b e s t l a s t l a u g h s l a u g h s w h o (each letter being output
separately).

The approach is the following:

1. Push the empty string, demarcated by Bs, on the stack, and move the input pointer to the
first letter of the first word.

2. Push a sentinel, a word larger than any word, on the stack, which now has the form
Bw1Bw2B. Consider the two-part invariant “(1) w1 is the last word processed; (2) w2

is the smallest word larger than w1 that we have seen between the beginning of the input
and the input pointer”. It holds at this point.

3. While the input pointer is not at the end of the input, repeat the following step.

(a) Read the next word w3 in the input, all the while comparing it to w1 and w2. If it is
lexicographically between w1 and w2, unstack w2 and stack w3 instead.

(b) Move the input pointer to the beginning of the next word if present, or to the end of
the input otherwise. This updates part (2) of the invariant.

4Dutch proverb

2SA – 15 May 1, 2012

4.6 Constructing a calling graph 4 EXAMPLES OF 2SA PROGRAMS

If the sentinel is still on the top of the stack, there are no more words to be output, and we
are done. Otherwise, the word on the top of the stack w2 is the next lexicographically larger
word after w1; continue with Step 4.

4. Position the input pointer to beginning of the first word.

5. While the input pointer is not at the end of the input, repeat the following steps.

(a) Read the next word in the input, and if it is equal to w2, output it.

(b) Move the input pointer to the beginning of the next word if present, or to the end of
the input otherwise.

This updates part (1) of the invariant.

6. Go to step 2. (Stacking the sentinel will make the w2 just processed the new w1).

It is clear that each operation used in the above description can be implemented fairly simply on
the 2SA.

At the end of the algorithm, the stack contains the sort-unique of the input.
A small variation of the algorithm can recognize input consisting of unsorted words followed

by the same words in sorted order:

who laughs last laughs best=best last laughs laughs who

or unsorted words followed by single copies of the words sorted (sort-unique):

who laughs last laughs best=best last laughs who

4.6 Constructing a calling graph

Next to the symbol table, the calling graph is an important component in a compiler. We will
sketch here, in even less detail than for the sorting program, how to create one; consulting it is
then trivial.

We assume the input consists of (or can be viewed as consisting of) a sequence of procedure
names, each with the names of the procedures it calls directly:5

Input: ���¢horse(cat, dog)pig(horse)cat(pig, cow)dog()cow()$

where horse calls cat and dog directly, and dog calls no other procedures.
The calling graph will be a sequence of procedure names, each followed by the names of all

procedures it calls directly or indirectly. We will call the procedure the “caller” and the called
procedures the “callees”.

The algorithm goes as follows:

1. Stack an empty caller name, with an empty callee list, demarcated.

Input: ���¢horse(cat, dog)pig(horse)cat(pig, cow)dog()cow()$
Stack: B()B#

2. Stack the sentinel caller name, and find the smallest caller name between the one on the top
of the stack, and the one next below, using the technique from Section 4.5. If a caller name
is found, copy it to stack together with all its callees; otherwise we have processed all callers
and are done.

Input: ¢���horse(cat, dog)pig(horse)cat(pig, cow���)dog()cow()$
Stack: B()Bcat(pig, cow���#

3. Move the stack pointer to the first callee:

5This example represents the program from Figure 1.28 in “Modern Compiler Design”, by Dick Grune et al.

2SA – 16 May 1, 2012

4.6 Constructing a calling graph 4 EXAMPLES OF 2SA PROGRAMS

Input: ¢���horse(cat, dog)pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig���, cow#

4. Find in the input the caller with the name the stack pointer is pointing to:

Input: ¢horse(cat, dog)pig���(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig���, cow#

5. For each of its callees in the input, try to find it in the callees already on the stack, and if
it is not there, add it:

Input: ¢horse(cat, dog)pig(horse���)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig, cow, horse���#

This is can be done because the input pointer remains confined to the callee name, and the
stack pointer to the segment (......#

6. Now we need to find the name of the next callee to be processed. Move the input pointer
back to the name of the caller:

Input: ¢horse(cat, dog)���pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig, cow, horse���#

7. Search the callees on the stack for the caller name the input pointer is pointing to:

Input: ¢horse(cat, dog)���pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig���, cow, horse#

This brings the stack pointer back to where it was in Step 4.

8. Move the stack pointer one name to the right, if possible:

Input: ¢horse(cat, dog)���pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig, cow���, horse#

If that was possible we have found the next callee, and go to Step 4; otherwise we continue
with Step 9.

9. We have now processed all callees of the present caller; all direct and indirect callees of it
have been assembled on the stack:

Input: ¢horse(cat, dog)���pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat(pig, cow, horse, cat, dog���#

10. Close the callee list with)B:

Input: ¢horse(cat, dog)���pig(horse)cat(pig, cow)dog()cow()$
Stack: B()Bcat���(pig, cow, horse, cat, dog)B#

Note that this shows that cat is recursive.

11. We are now ready for the next caller, and go to step 2.

2SA – 17 May 1, 2012

5 CONCLUSIONS

5 Conclusions

The art of programming the 2SA consists of two parts: finding an algorithm that can work in
the confines of the 2SA memory; and coding the components of the algorithm in 2SA transitions.
The first requires brain power, and the use of invariants; the second is easy, using the facilities
described in Section 3. Still, programming the 2SA feels somewhat like building a model of the
Notre Dame from match sticks.

There is no formal proof that 2SAs are suitable for compiler writing, short of actually writing
one, which would require a ridiculous amount of work. However, given the fact that a sorting
routine and a routine for building a calling graph could be designed with a few hours thought,
the possibility does not look bad. Still, the 2SA is very far from having the same relationship to
semantics as the pushdown automaton has to syntax or the finite state automaton to lexical anal-
ysis. For semantics, attribute grammars do a far better job, but there seems to be no automaton
related to it, and no pertinent theory.

The 2SA is not a Turing machine, so a compiler from C to 2SA is not possible.
Fig. 1 in SAaC , which serves there as a demonstration of the suitability of the 2SA as a

compiler machine, can be reproduced fairly easily by a fairly structured program for the 2SA (see
in particular Section 3.3).

In summary: Myth Plausible.

2SA – 18 May 1, 2012

