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ABSTRACT

Under some simple conditions, two-level grammars can generate languages with
unbounded numbers of terminal symbols; Type 0 grammars cannot.

Introduction

In 1967, Sintzoff[1] showed that for every semi-Thue system there is a two-level or VW (van Wijngaar-
den) grammar. In 1974, van Wijngaarden[2] showed that the production mechanism of VW grammars can be
used to simulate a Turing machine. In fact both proved that L(VW) ⊇ L(Type 0).

An observation

Surprisingly, it is almost trivial to show that L(VW) ⊃ L(Type 0), i.e., that there are well-defined sets of
sequences of symbols that can be generated by a VW grammar but not by a Type 0 grammar. An example is the
set

S={t1
n . . . tk

n | n≥0,k>0, t 1
. . . tk are different symbols} (1)

i.e. the set of all strings consisting of an unbounded number (k) of different symbols, each occurring the same
number of times (n) in succession. A Type 0 grammar cannot produce this set since for such a grammar the
number of terminal symbols in it is limited in its definition. The VW grammar in Figure 1 (taken from Grune
and Jacobs[3] with substantial modification) produces the set, with tk corresponding to ik symbol.

N :: n N ; ε .
K :: i K ; ε .
ZERO :: ε .

start: sequence of Ki symbols each N times.

sequence of Ki symbols each N times:
sequence of K symbols each N times, Ki symbol N times.

sequence of ZERO symbols each N times: ε .

K symbol Nn times: K symbol, K symbol N times.
K symbol ZERO times: ε .

Figure 1.

In the classical application of a VW grammar, the ALGOL 68 report[4], the correspondence between pro-
tonotions ending in symbol and their representations is specified by enumeration (in § 9.4). The easiest way to
specify such a correspondence for the grammar of Figure 1 is to say that the representation of a symbol of the
form i... symbol is that same i... symbol. (There is no reason why representations of symbols should consist of
contiguous areas of ink or be of limited length: i, Θ and implementation_module can very well be representa-
tions of symbols.) If one wants to avoid the ... in the above correspondence, it is easy to supply a short (finite)
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recipe for mapping protonotions denoting symbols onto representations. The recipe could, e.g., first remove all
sequences of i-s of length five from the protonotion and add a corresponding number of s to the represen-
tation, and then handle the remaining i-s in a similar way.

We note that even if we allow the mechanism of specifying representations by recipe rather than by
enumeration to a Type 0 grammar, the latter still cannot generate the set S: for an unbounded number of dif-
ferent symbols to be produced they all have to occur somewhere in the right-hand sides of rules.

There are no infinite actions involved in the generation of elements of the set S from the grammar in Fig-
ure 1. Once a terminal production of the metanotion K has been substituted in the right-hand side of the start
symbol, the number of terminal symbols in the the result is fixed and finite. Likewise there are no unusual prob-
lems in the syntactic and semantic analysis of an element of the set S. Once the parse tree has been constructed,
inspection of the (only) direct descendant of the start symbol reveals how many different symbols the element
contained.

An attempt at analysis

The above observation raises three related questions: what is exactly a terminal symbol, what is it exactly
that a grammar produces, and is S a recursively enumerable (r.e.) set?

For a Type 0 grammar, these questions are almost trivial to answer. A terminal symbol in a Type 0 gram-
mar is a named atomic entity on which only one operation is defined: concatenation; the terminal symbols in a
particular Type 0 grammar are given by enumeration in the specification of the grammar (and are therefore a
finite set). And a Type 0 grammar produces the concatenation of zero or more of such terminal symbols, the
generated string. There is still a small problem left, though. In order to do something with the generated string
we have to be able to recognize the terminal symbols in it, to see, e.g., that the first symbol is program. For this
human recognition we require each terminal symbol to have a representation. Traditionally for a Type 0 gram-
mar, the representation and the symbol name are the same, disregarding type font differences and other
irrelevancies. In this view, we have only those terminal symbols that we specify ourselves and which we can
recognize from their representations. There cannot be an unbounded set of terminal symbols since we can only
specify finite sets of them and there are no others. Not only is the set S not r.e., it is not even a well-defined set
at all.

For a VW grammar, the situation is completely different. It does not produce a sequence of terminal sym-
bols, it produces a comma-separated sequence of protonotions, each ending in symbol ([4], § 1.1.3.1.f and §
1.1.3.2); protonotions are sequences of small syntactic marks; and small syntactic marks are defined in the
grammar by enumeration. In

i symbol, i symbol, i i symbol, i i symbol (2)

i, s, y, m, b, o and l are small syntactic marks and i symbol and i i symbol are protonotions. The sentence gen-
erated by the grammar is obtained by taking each protonotion, finding a representation for it and replacing it by
that representation ([4], § 9.3.b), while at the same time deleting the separating comma. If a protonotion is met
for which there is no representation, the generated sequence of protonotions was a blind alley and does not form
a sentence in the language; this happens, e.g., for the brief pragmat symbol in the grammar in the ALGOL 68
report. Traditionally in VW grammars, the representation of a terminal symbol differs greatly from its name (=
the protonotion ending in symbol). The separation of name and representation allows us an easy way to accom-
modate unbounded sets of terminal symbols: we agree to accept the name of the terminal symbol as its represen-
tation (as we customarily do in Type 0 grammars). Since the names are generated by the grammar, there can be
an unbounded number of them.

In this view, the set S is a r.e. set and can be produced by a VW grammar (or a computer program) but not
by a Type 0 grammar. Although it is certainly possible to write a Type 0 grammar that produces the above
sequence (2), the latter would not consist of four but of 34 terminal symbols: i, s, y, m, b, etc. A mechanism that
combines a number of terminal symbols into a new terminal symbol is not a feature of a Type 0 grammar.

Conclusion

There seem to be two consistent views. In one, we accept only the terminal symbol representations we
have specified ourselves. Then S is not a set and L(VW) = L(Type 0), but we deny ourselves the pleasure of
unbounded sets of terminal symbols. In the other view, we allow the grammar to construct representations of
terminal symbols for us (which we then agree to recognize). Then S is a r.e. set and L(VW ) ⊃ L(Type 0).
Whether these unbounded sets of terminal symbols are in any way useful is not yet clear.
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