More answers to exercises

This version contains more answers to exercises than shown in Appendix A of the book
Modern Compiler Design.

Answers for Chapter 1

11

12

16

Advantages. Assuming the language is still being designed, writing a major piece of software in it is an
excellent shake-down for the language design. Compiling the compiler may be a good way to debug the
compiler (but there is a problem here: how defensible is debugging by using not well debugged tools?) Any
improvement to the compiler benefits the compiler writers themselves, which gives them an incentive to
improve the compiler more.

Disadvantages. Bootstrapping problems. there is no compiler to compile the first version with. Any
changes to the language may necessitate many modifications to the compiler, as both the implementation
and the source language change. The compiler may inadvertently be tuned to constructions used specifi-
cally in the compiler.

The front-end (particularly the intermediate-code generator) may want to know if it should optimize for exe-
cution speed or code size. In most cases, speed is more important, but if the target machine is an embedded
processor in an inexpensive device, memory size may be more important.
The back-end may want to know about restrictions in the source language. For example, are pointers
alowed to point to any memory location or only to variables of a certain type? Consider

int x;

float *pf;

x = 12;

*pf = 0.0;

print(x);
If the language guarantees that pf cannot point to x, the last statement can be optimized topri nt (12) .

The code is basically that of the interpreter of Figure 1.19, except that rather than printing the value, it
creates anew Expr essi on node with the value.

709

710 More answers to exercises

1.7 The error reporting module reports program errors to the user; it is therefore used as follows. Program text
input module: to report missing files. Lexical analysis module: to report lexical errors, for example unter-
minated strings. Syntax analysis module: to report syntax errors, for example unbalanced parentheses.
Context handling module: to report context errors, for example undeclared variables and type mismatches.
In principle, none of the other modules should need to report program errors to the user, since the annotated
AST as produced by the context handling module should be that of a correct program.

1.9 Indatastructures outside the while statement, as with any while statement.
111 SeeFigure Answers.1.

SET the flag There is a character _a_ buffered TO Fal se;

PROCEDURE Accept filtered character Ch from previous nodul e:
IF There is a character _a_ buffered = True:
/Il See if this is a second’
IF Ch ="a:
/1 W have 'aa’:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'b’ to next nodul e;
ELSE Ch /= "a’:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'a' to next nodul e;
Qut put character Ch to next nodul e;
ELSE IF Ch = "a’:
SET There is a character _a_ buffered TO True;
ELSE There is no character 'a buffered AND Ch /= "a’:
Qut put character Ch to next nodul e;

PROCEDURE Fl ush:
IF There is a character _a_ buffered:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'a' to next nodul e;
Fl ush next nodul e;

a :

Figure Answers.1 Thefilter aa — b asapost-main module.

1.13 First a subset is created by taking away some features; the language is then extended by adding new
features. An example would be a C compiler which does not implement floating point numbers but does
have built-in infinite-length integer arithmetic. The sarcasm comes from the fact that everything is an
extended subset of everything else, which makes the term meaningless.

1.14 The grammar is now ambiguous; more in particular 8 - 3 - 5 will now parse bothas(8 - 3) - 5
and8 - (3 - 5),withobvioudly different semantics.

1.15 A possiblerewriteis:

paraneter_list -

in_out_option identifier next_identifier_sequence_option
in_out_option - "IN | "OUT" | ¢
next _identifier_sequence_option -

",’ identifier next_identifier_sequence_option | €

1.16 (a) left-recursive: B, C; right-recursive: S, C; nullable: S, A; useless: C. (b) Theset { x, €}. () Yes, x is
produced twice: S - A - B - xandS - B - x.

117

1.18

1.19

1.20

Answers for Chapter2 711

For example, vari abl e_identifier, array_identifier, and procedure_identifier
may be different in the grammar but may still al be represented by an identifier in an actual program.

The empty representation cannot be recognized by the lexical analyzer, so the token will not reach the
parser, which islikely to make parsing (much) harder.

The grammatical production process stops when the sentential form consists of terminals only; to test this
situation, we have to be able to tell terminals and non-terminals apart. Actualy, thisis not entirely true: we
can scan the grammar, declare all symbols in left-hand sides as non-terminals and all other symbols as ter-
minals. So context condition (1) actually provides redundancy that can be checked.

Suppose there were two different smallest sets of information items, S, and S,. Then S, and S, must have
the same size (or one would not be the smallest) and each must contain at least one item the other does not
contain (or they would not be different). Call one such differing itemin S, X. Since both sets started with
the same initial items, X cannot be an initial item but must have been added by some application of an infer-
encerule. Thisrule clearly did not apply in S,, so there must be at least one other item Y that is present in
S, and absent from S,. By induction, al itemsin S, must differ from al itemsin S,, but thisisimpossible
since both started with the same initial items.

Answers for Chapter 2

25
27

29

211

(C) 0% (10* 1) * 0*

They both mean the same as a*. They are not fundamentally erroneous but may draw a warning from a
processor, since they are probably not what the programmer intended. Ambiguity is not a concept in lexical
analysis, so they are not ambiguous.

See Figure Answers.2.
voi d skip_l ayout _and_comment (voi d) {
while (is_layout(input_char)) {next_char();}
while (is_coment_starter(input_char)) {
ski p_coment () ;
while (is_layout(input_char)) {next_char();}
}
}
voi d ski p_comment (void) {
next _char();
while (!is_coment_stopper(input_char)) {
if (is_end_of _input(input_char)) return;
else if (is_comment_starter(input_char)) {
ski p_conmment () ;
}
el se next_char();
next _char();
}
Figure Answers.2 Skipping layout and nested comment.
Let him/her implement it and then feed an object file or jpeg picture as source file to the compiler; admire

the crash. Or, more charitably, explain this intention to the inventor.

712 More answers to exercises

2.12 Theinput can match T, » R; over more than one Lengt h.
2.14 By enumerating all 256 possihilities: the pattern is not regular.

2.15 For example T—a(Re)"B. The* meansthat 1 or more Rs can be present. The dot after the R shows that
one R has already been recognized. Now there are two hypotheses: 1. This was the one and only R; the dot
leaves the (R) behind and moves in front of the B: T—a(R)" ef. 2. There is another R coming; the dot
moves to the position immediately in front of the R: T - a(eR)*B.

2.16 See Figure Answers.3.

T ae(R&R&..&R B O
TR, (R,&R.&..&R,B
ToaeR,(R,&R.&..&R, B

'T!u-Rn(Rl&RZ&...&Rn,l)B

Figure Answers.3 € move rule for the composition operator &.

2.17 Each round adds at least one dotted item to Cl osur e set and there is only a finite number of dotted
items.

2.18 There are 6 itemsthat have the dot before a basic pattern or at the end:
integral _nunber - (e [0-9])+

integral _nunber - ([0-9])+ e <<<< recogni zed
fixed_point_nunber - (e [0-9])* .’ ([0-9])+
fixed_poi nt_nunber - ([0-9])* e '.’ ([0-9])+
fixed_point_nunber - ([0-9])* ".’ (e [0-9])+
fixed_point_nunmber - ([0-9])* "." ([0-9])+ o <<<< recognized

and so there are 2°=64 subsets of 6 items.

2.20 See Figure Answers.4. Unfortunately, it appears that thisis not in any way better than marking by charac-
ter; on the contrary, the state array is probably larger.

0 (1, 0) - (2, 0)

1 (1, 1) - (2, 1)

2 (3, 2 - -

3 (3, 3 -
(1, 0) (1, 1) (2, 00 (2, 1) (3, 2) (3, 3) -

Figure Answers.4 Fitting the strips with entries marked by state.

2.22 See Figure Answers.5. We first copy strings and characters; this avoids recognizing the St ar t Corment
inside them. Next we break up the string into safe chunks and keep track of where we are in a start condi-
tion <Conment >. Comments can contain * but not */ ; so we consume the * s one by one, and then match
thefinal */ . Thisresetsthe start conditionto | NI Tl AL.

2.23 Close cooperation between lexical and syntax analyzer isrequired. Asakludge, preliminary skipping of the
dynamic expression based on counting nested parentheses could be considered. Error recovery is a night-

2.25

2.26

2.28
2.29
232

2.33
235
2.37

Answers for Chapter2 713

ust ar t Comment

Layout ([\t])

AnyQuot ed (\\.)

St ri ngChar ([""\n\\]]| {AnyQuot ed})

Char Char ([77\nm\\]] {AnyQuot ed})

St art Conment ("r*")

EndComent ("*rm)

Saf eConment Char (["*\'n])

Unsaf eComment Char ("*")

%0

\"{StringChar}*\" {printf("%", yytext);} /* string */

\" {Char Char}\’ {printf("%", yytext);} /* character */
{Layout }*{ St ar t Conmrent } {BEG N Comment ; }
<Comment >{ Saf eComment Char } + {} [/* safe comment chunk */
<Comment >{ Unsaf eComment Char } {} /* unsafe char, read one by one */
<Comment >"\ n" {} /* to break up long comments */
<Comment >{ EndConmment } {BEG N I NI TIAL; }

Figure Answers.5 Lex filter for removing comments from C program text.

mare.

Initially use a hash table of size N, as usual, and implement it in an extensible array. When the table gets
crowded, for example when there are more than N identifiers, extend the table to twice its size and adapt the
hash function. Go through the occupied half of the table, and for each chain recompute the hash values of
its elements. Since k MOD (2*N) is either k MOD N or k MOD N + N (prove!), the chain splits into two
chains, one that stays where it was and one that will be located in the newly allocated part, at an address that
is N higher. Both will be equally long on the average; this distributes the identifiers evenly. This process
can be repeated as often as required, memory permitting.

It isn't as simple as that. It depends on the amount of interaction of the macro processing with the lexical
analysis of larger units, for example strings and comments. In C the scheme is hare-brained since it would
require the macro processor to do almost full lexical analysis, to avoid substituting inside strings and com-
ments. But in a language in which macro names have an easily recognizable form (for example in PL/I, in
which macro names start with a %9, there is no such interference, and a better structuring of the compiler is
obtained by a separate phase. But the loss in speed and the large memory requirements remain. Also, with
full macro processing preceding compilation, it is very difficult to reconstruct the source text as the com-
piler user seesit.

Answer for N=3 in Figure Answers.6.
Figure Answers.7 shows an LALR(1) suffix grammar for the grammar of Figure 2.84.

Addition is commutative, a+b=b+a, but subtraction is not, a-b#b-a. So, when 9+3+1 isincorrectly inter-
preted as 9+(3+1) , no great harm is done, but when 9- 3- 1 is incorrectly interpreted as 9- (3- 1), an
incorrect answer results.

See Hanson (1985).
Collect invariants that hold when each routine is called and propagate them to the routines themselves.

(8 LL(1) and e-free. (b) Predictive isstill more efficient.

714

241

242

More answers to exercises

GENERI C PROCEDURE F1(Type) (paraneters to F1):
SET the Type variable Var TO ...;
/'l some code using Type and Var

GENERI C PROCEDURE F2(Type) (paraneters to F2):
FUNCTI ON F1_1(paraneters to F1_1):
| NSTANTI ATE F1(Integer);
FUNCTI ON F1_2(paranmeters to F1_2):
| NSTANTI ATE F1(Real);
SET the Type variable Var TO ...;
/1 some code using F1_1, F1_2, Type and Var

GENERI C PROCEDURE F3(Type) (paraneters to F3):
FUNCTI ON F2_1(paranmeters to F2_1):
| NSTANTI ATE F2(I nt eger);
FUNCTI ON F2_2(paranmeters to F2_2):
| NSTANTI ATE F2(Real) ;
SET the Type variable Var TO ...;
/'l some code using F2_1, F2_2, Type and Var

Figure Answers.6 An example of exponentia generics by macro expansion.

% oken | DENTI FI ER
% oken EOF
W

i nput _suffix :
expression_suffix EOF | EOF ;
expression :
term| expression '+ term;
expression_suffix :
termsuffix | expression_suffix '+ term| "+ term;
term:
IDENTIFIER | ' (' expression ')’ ;
termsuffix :
expression ')’ | expression_suffix ") | ") ;

Figure Answers.7 An LALR(1) suffix grammar for the grammar of Figure 2.84.

The recursion stack consists of alist of activation records, each of which defines an active routine; only the
top oneis running. Each activation record contains a continuation address (often called return address) tel-
ling where the routine should continue when it becomes the top node. The code from the continuation
address to the end of the routine consists of zero or more routine calls. These calls represent what is being
predicted and the corresponding grammar symbols are part of the prediction stack. Thus each activation
record represents part of the prediction stack; the total prediction stack is the concatenation of al these
parts, in the order of the activation records. Additional exercise: draw a picture that illustrates the above
explanation in a clear way.

@S - aNb | Nc; N - & FOLLOW(N) ={ b, c}, butinitialy, only c can follow N and after an a
has been seen, only b can follow N.

(b) We predict a nullable aternative of N only if the input token isin the actual follow set; only then do we
have the guarantee that the next input token will be matched eventually.

243

244

245

248

Answers for Chapter 2 715

(c) For B B,...3,, stack n pairs (By, K), where K = FIRST(By1..-Bn) if Bysz---B, does not produce €, and k =
FIRST(Biss---Bn) O O if Byss...B, does produce €.

(d) On input b, the strong-LL(1) parser predicts N - €, since b isin FOLLOW(N), but the full-LL(1)
parser detects the error since b isnot in {a, $}. Something similar happens on the input ac with the token
c.

(e) Suppose the grammar has anon-terminal N with a FIRST/FOLLOW conflict; then N has a nullable alter-
native, say A;, and there is a token, say t, that is both in a FIRST set of an aternative, say A, and in
FOLLOW(N). Sincet isin FOLLOW(N), there must be afull-LL(1) pair (N, 0), witht ino. That pair has
afull-LL(1) conflict, since we still do not know whether to predict A, or the nullable alternative A;.

(f)S -> xNab | yNbb ; N -> a | & FOLLOW_2(N)={ab, bb}. Strong-LL(2) cannot decide
between N -> a {ab, bb} which applies for look-aheads { aa, ab} and N -> ¢ {ab, bb}
which applies for look-aheads { ab, bb}. Full-LL(2) has separate prediction pairs (N, ab), occurring
after x and (N, bb), occurring after y. So it can decide both between N -> a {ab} which applies for
look-ahead { aa} and N -> ¢ {ab} which applies for look-ahead { ab}, and between N -> a {bb}
which appliesfor look-ahead { ab} andN -> ¢ {bb} which appliesfor look-ahead { bb} .

See Figure Answers.8.

stack continuation FIRST set
par ent hesi zed_expressi on rest_expressi on EOF {0}
(' expression ')’ rest_expression EOF T
expression ')’ rest_expressi on EOF { IDENTIFIER ' (" }
termrest_expression ')’ rest_expression EOF { IDENTIFIER " (" }
| DENTI FI ER rest _expression ')’ rest_expression EOF | DENTIFI ER
rest_expression ')’ rest_expression EOF { '+ ¢}
")’ rest_expression EOF)’
rest_expression EOF { '+ ¢}
EOF ECF

Figure Answers.8 Stack continuations with their FIRST sets.

Acceptableset: { * (* ')’ '+ | DENTIFIER EOF }.

The acceptable set of anon-terminal N is the union of FIRST(N) and the acceptable set of the shortest alter-
native of N. So, the acceptable sets of all non-terminals can be precomputed using a closure algorithm.
Now, if the prediction stack is available directly (as an array or alinked list), we can traverse the stack and
compute the union of the acceptable sets of the symbolsin it. In LLgen, however, the prediction stack is
just the C stack and is not available for traversal. LLgen keeps an integer array indexed by grammar sym-
bols counting how many times a given symbol is present on the stack. Thisinformation is easily maintained
and suffices to compute the acceptable set.

Since the input ends in a EOF token, o must consist of zero or more grammar symbols, followed by EOF or
it would never match the EOF. The imaginary parser steps forced by an empty input remove the grammar
symbols one by one, leaving the single EOF as the last stack configuration. Its FIRST set contains EOF.

(a) When the ACTION table calls for a ‘reduce using rule N - a’, the item set corresponding to the state on
the top of the stack contains the item N - ae. The dot can only be at the end of a when it has just passed
over the last member of a, which must therefore be just below the top state on the stack. This reasoning
applies successively to al other members of a, which must therefore also be on the stack.

(b) The item set preceding a on the stack must contain the item N - ea, or no a would be recognized and
no item N—ae would eventually be found. The item N - ea must have originated from some item
P - BeNy. The presence of this item guarantees that a transition on N is possible, leading to a state that
includes P - BN ey.

716 More answers to exercises

249 A value ‘shift’ inan ACTION table entry does not conflict with ancther ‘shift’ value in that same entry, but
a ‘shift’ and a ‘reduce’ do. So do a ‘reduce’ and another ‘reduce’, since they are actually two different
‘reduces’: ‘reduce to M’ and ‘reduceto N'.

250 See Figures Answers.9, Answers.10, and Answers.11. The LR(0) automaton isidentical to those in Figures
Answers.9 and Answers.11 with the look-ahead sets removed and does not need to be shown here.

O shift-reduce

S->. xSx{ $}
S->. x{ $}

Figure Answers.9 The SLR(1) automatonforS - X S x | X.

251 Thetree hastheform !L (x] (x)) n-1 and the last x isthefirst handle, in any bottom-up parser.
Soadlthe[(x] must be stacked.

252 (e YesifA -~ P Q| QadQ - A |

254 See Figure Answers.12.
This grammar is unambiguous and will pair the el se to the nearest unpairedi f .

2.55 After rule 2, add: ‘If t and u are the same operator: if the operator is left-associative, reduce, otherwise
shift.’

2.57 When meeting empty input, the only stack element is the state S,, which is easily derived from that in Fig-
ure 2.97 and which is shown in Figure Answers.13. No elements are removed from the stack since there is
dready an error-recovering state on top. Next a dummy node err oneous_A (caled err _A in the
diagram) is constructed and stacked. Thisresultsin state S,, to be stacked. Since EOF ($) isthe next input
token, er r oneous_A isreduced to A, which is stacked. Parsing then proceeds as nhormal. The resulting
parsetreeisS - A - erroneous_A.

2.58 In a pure bottom-up parser no such pointers exist: trees are constructed before their parents, and the only
pointer to a tree is the one on the stack that is used to discard the tree; the stack entry that contains it is
removed by the recovery process. If other pointers have been created outside the parsing mechanism, these
must be found and zeroed.

Answers for Chapter 2

O shift-reduce O shift-reduce

So
S->x. Sx{$ S->x. Sx{x
S->. xSx{ $} S->x.{$) S->x. {x }
o S50 g2 e

Figure Answers.10 TheLR(1) automatonforS - x S x | Xx.

[shift-reduce 0 shift-reduce

S->. xSx{ $}
S->. x{ $}

Figure Answers.11 The LALR(1) automatonforS - x S x | x.

717

718 More answers to exercises

if_statenent - short_if_statenent | |long_if_statenent
short_if_statenent - 'if’ ' (' expression ')’ statement
long_if_statenment -

if’ (" expression ')’ statement_but_not_short_if

‘el se’ statenent

statement _but _not _short_if - long_if_statement | other_statenent
statement - if_statenment | other_statenent
ot her _statenent - ...

Figure Answers.12 An unambiguous grammar for the if-then-else statement.

A->B. {$}

SH

Figure Answers.13 State S, of the error-recovering parser.

Answers for Chapter 3

3.1 (& N (non-terminal); (b) N; (c) P (production rule); (d) P; (e) N; (f) P; (g) P; (h) N.

3.2 For anon-terminal N, some of its production rules could set some attributes and other rules could set other
attributes. Then the attributes in a tree with a node for N in it could be evaluable for one production (tree)
of that N, and not for another. This destroys the composability of context-free grammars, which says that

Answers for Chapter 3 719

anywhere an N is specified, any production of N is acceptable.

3.3 The topological sort algorithm of Figure 3.16 will fail with infinite recursion when there is a cycle in the
dependencies. A modified algorithm with cycle detection is given in Figure Answers.14.

FUNCTI ON Topol ogi cal sort of (a set Set) RETURNING a |ist:
SET List TO Enpty list;
SET Busy list TO Enpty list;
WHI LE there is a Node in Set but not in List:
Append Node and its predecessors to List;
RETURN Li st;

PROCEDURE Append Node and its predecessors to List:
/1 Check if Node is already (being) dealt with; if so, there
/Il is a cycle:
IF Node is in Busy list:
Panic with "Cycle detected";
RETURN,
Append Node to Busy list;
/1 Append the predecessors of Node:
FOR EACH Node_1 IN the Set of nodes that Node is dependent on:
IF Node_1 is not in List:
Append Node_1 and its predecessors to List;
Append Node to List;

Figure Answers.14 Outline code for topological sort with cycle detection.

34 SeeFigures Answers.15 and Answers.16.

Figure Answers.15 Dependency graphsfor S, A, and B.

35 SeeFigures Answers.17 and Answers.18.

3.6 (&) Figure Answers.19 shows the dependency graph of S, Figure Answers.20 the S-Sl graph of S.
(b) €i 1,i2},{s1,s2}).

720 More answers to exercises

A from B

Figure Answers.16 1S-Sl graph of A.

Figure Answers.17 Dependency graphsfor S and A.

(c) 1 routine:
parent prepares S.i 1 and S.i 2:

PROCEDURE Visit_1 to S (il, i2, sl, s2):
/1 S.il and S.i2 available -

SET U.i TO f2(S.i2); /1 - Ui available
Visit_1to U (Ui, Us); /1 - U.s available
SET T.i TOf1(S.il1, Us); /1 - T.i available
Visit_1to T (T.i, T.s); /l - T.s available
SET S.s1 TO f3(T.s); /1 - S.sl available
SET S.s2 TO f4(U.s); /1l - S.s2 available

or any other dependency-conforming order. (Exercise: find another order).

3.7 (&) SeeFigure Answers.21.
(b) {i 2,s2}), {i 1,s1}).

(c) 2 routines:

Answers for Chapter 3 721

IS-SI graph set of A

][] a (] (2] (1] [i2] a [51] [#2]

N

merged |S-S| graph of A

i1] iz]| Aals1]|s2]

N

Figure Answers.18 S-Sl graph sets and IS-Sl graph of A.

Lit] [iz2]s|s1]|s2]

_/

i1] 7] st] it] ust]

Figure Answers.19 Dependency graph of S.

(1] [i2] s [31] [2]

Figure Answers.20 1S-Sl graph of S.

parent prepares S. i 2:

PROCEDURE Visit_1 to S (il, i2, sl, s2):
// S.i2 available -
SET U.i TO f2(S.i2); /1 - Ui available
Visit_1to U(Ui, Us); /1 - U's available
SET S.s2 TO f4(U.s); /1l - S.s2 available

parent receives S. s2

722 More answers to exercises

parent prepares S. i 1:

PROCEDURE Visit_2 to S (i1, i2, sl, s2):
/Il S.i2, Ui, Us, S s2, S.il available -

SET T.i TOf1(S.i1, Us); /1 - T.i available
Visit_1to T (T.i, T.s); /1 - T.s available
SET S.s1 TO f3(T.s); Il - S.sl1 available

parent receives S. s1

L

Li1] [iz2]s|s1]|s2]

o N S

Figure Answers.21 IS-Sl graph of S.

3.8 From the absence of S| arrowsinthe IS-Sl graph of S we can conclude that all inherited attributes are avail-
able when S is visited; so there is no L-attribute problem there. The call to T, however, inVisit_1 to
S() must now precede the one to U. We cannot supply it with T. i , though, since that is available only
after the visit to U. So we pass a dummy parameter to T and extend T with another synthesized attribute
T. cont _i , which contains a representation of the computations to be performed when T. i is known.
Depending on the implementation language of the attribute evaluator, this representation could have the
form of an expression tree, a continuation routine, or perhaps just an ad-hoc indication. Anyway, its activa-
tion results in T. s to be computed; we assume a function Conput e() to be available for the purpose.
Notethat T. cont _i may be very complicated since T may have been forced to pass the problem on to its
children, and so on. All thisresultsintheroutineVi sit to S() shownin Figure Answers.22.

parent prepares S.i 1 and S.i 2:

PROCEDURE Visit to S (i1, i2, sl1, s2):
/1 S.il and S.i2 available -

Visit to T (-, T.cont_i); I/l - T.cont_i available
SET U.i TO f2(S.i2); /1 - Ui available
Visit to U (Ui, Us); /Il - U s avail able
SET T.i TO f1(S.il, U.s); /1 - T.i available
SET T.s TO Conpute(T.cont_i, T.i) /Il - T.s available
SET S.s1 TO f3(T.s); /1 - S.sl available
SET S.s2 TO f4(U.s); /Il - S.s2 available

Figure Answers22 Visit to S().

3.9 Thefact that no intervening visits to other children are needed shows that the production rule already has all
the information for the second visit. This may, however, not be the case in al production rules that have
thistype of child, so other production rules may require two non-consecutive visits.

3.10 See Figure Answers.23. Here, Concat concatenates a character representation to a string, and Checked
nunber val ue convertsastring to an integer, checking each digit in the string.

3.12

313
314
3.15
3.16

3.17

3.18

3.19

Answers for Chapter 3 723

Nunmber (SYN val ue) -
Di git_Seq Base_Tag
ATTRI BUTE RULES
SET Nunber .value TO Checked nunber val ue(
Digit_Seq .repr,
Base_Tag . base);

Digit_Seq(SYN repr) -
Digit_Seq[1] Digit
ATTRI BUTE RULES
SET Digit_Seq .repr TO
Concat (Digit_Seq[1] .repr , Digit .repr);

Digit
ATTRI BUTE RULES
SET Digit_Seq .repr TODigit .repr;

Digit(SYN repr) -
Di gi t _Token
ATTRI BUTE RULES
SET Digit .repr TO Digit_Token .repr [O];

Base_Tag(SYN base) -
B
ATTRI BUTE RULES
SET Base_Tag .base TO 8;

"D
ATTRI BUTE RULES
SET Base_Tag . base TO 10;

Figure Answers.23 An L-attributed grammar for Nunber .

Hints: For each rule for each non-terminal N, do the following. Turn al inherited attributes of the children
of N into local variables of N. If achild used to get an inherited attribute i and returned a synthesized attri-
bute s, it now returns a function to be called with the value of i once it becomes available, which yields the
value of s. If i does not come available inside N, s cannot be computed now, and a new routine is created to
be passed on upwards.

See Figure Answers.24.
See Figure Answers.25.
See Figure Answers.26, and note that the code is a simplification over that from Figure 3.37.

Pass the list (stack representation) through the condition, since the condition is the first to be executed at run
time. Keep a copy of the resulting list, pass the resulting list through the body of the while statement, and
merge with the copy. This combines the possihilities of zero and multiple passes through the loop at run
time.

Pass the list (stack representation) through the body of the repeat-until statement, since the body is the first
to be executed at run time. Then pass the resulting list through the condition of the repeat-until statement,
since it will always be executed at run time.

We need two variables, the actual number needed here and a high-water mark. Simple symbolic interpreta-
tion suffices.

The successor of the then-part is the merge node at the end of the if-statement rather than its else-part, and it

724 More answers to exercises

Wi | e_st at enent /

X
Conditio St at ement s
Figure Answers.24 Threaded AST of the while statement.
Repeat _st at enent /
X

St at enent s Condi tion

Figure Answers.25 Threaded AST of the repeat statement.

is correct that we enter that node with an empty list during symbolic interpretation, since we will never
reach the end of the if-statement from the end of the then-part when the program is run, due to the interven-
ing jump. Full symbolic interpretation works on the threaded AST rather than on the linear program text.

3.20 Simple symbolic interpretation touches the program text only once, so it runsin linear time. Full symbolic
interpretation involves repetition until convergence, which may in principle be non-linear. But as with most
closure agorithms, the number of repetitions involved barely depends on the size of theinput. Three to four
repetitions are amost always sufficient to reach convergence, so full symbolic interpretation too runs in
linear time, albeit with alarger constant factor. The same applies to the data-flow equations.

3.21 It violates requirement 4 in Section 3.2.2.1: the actions to be taken on constants do not subsume those taken
on variables. Quite to the contrary, any constant can be handled by code generated for variables but not the

other way around.

3.22

3.23
3.24

325

Answers for Chapter 3 725

#i ncl ude "parser.h" /* for types AST_node and Expression */
#i ncl ude "thread. h" /* for self check */

/* PRI VATE */
static AST_node *Thread_expressi on(Expression *expr, AST_node *succ) {
switch (expr->type) {
case 'D:
expr->successor = succ; return expr;
br eak;
case 'P:
expr->successor = succ;
return
Thr ead_expr essi on(expr->l eft,
Thread_expressi on(expr->right, expr)
)i

br eak;

}
/* PUBLIC */
AST_node *Thread_start;

voi d Thread_AST(AST_node *icode) {
Thread_start = Thread_expression(icode, 0);

}

Figure Answers.26 Alternative threading code for the demo compiler from Section 1.2.

There is no way to represent the value V in the IN and OUT sets nor can it be propagated using fixed KILL
and GEN sets.

For each IN parameter KILL = GEN = (1, for each INOUT or OUT parameter KILL = 10, GEN = 01.

X becomes initialized. Con: It sounds unreasonable and counterintuitive to get a variable initialized by
assigning the value of an uninitialized variable to it. Pro: The error in the program is probably the lack of
initialization of y; the further usage of x is independent of this error. Since a warning is aready given on
the assignment, no further warnings on subseguent — probably correct — uses of x seem appropriate.

(a) Note that the meet operator must be intersection, because if the expression isto be very busy at a point, it
must be evaluated on all paths going through this point. The equations are:

OUT(N) = N IN(M)

M=dynamic successor of N

IN(N) = (OUT(N) \ KILL(N)) O GEN(N)

(b) The expression is killed by an assignment to any of its operands. The GEN and KILL bits for x* x are
given below.

GEN(1) = 0 KILL(1) = 1
GEN() = 0 KILL(2) = 0
GEN(3) = 1 KILL(3) = 0
GEN(4) = 0 KILL@4) = 0
GEN(5) = 0 KILL(5) = 0
GEN() = 0 KILL(6) = O

(c) Solving the equations gives:

726

3.26

More answers to exercises

IN() =0 OUT() =1
IN@ =1 OUT(=1
INB) =1 OUT(@®) =0
IN() =0 OUT(@) =0
IN(5) = 0 OUT(5) = 0
IN() = 0 OUT(6) = 0

The conclusion is that the evaluation of x* x can be moved to the position between statements 1 and 2, thus
moving it out of the loop.

Consider any routine with a flow-of-control graph that is a linear list from routine entry to routine exit.
Whatever the contents of the KILL and GEN sets, the IN and OUT sets will be computed in one scan
through the list, and there is no way to transport the information about the routine exit back to the last use of
avariable.

Answers for Chapter 4

4.1

4.2

4.3

Base the recursive descent on the rule that the shortest distance from a node N to a leaf is one plus the
minimum of the shortest distances from the children of N to the leaf. The recursive descent process will
visit the nodes close to leaves exponentially often, causing the algorithm to be exponential in the size of the
graph.

Now add memoization by saving the distance found in each node. Now no value needs to be recomputed,
and each nodeisvisited only once, resulting in alinear-time algorithm. Enjoy the spectacular speed-up!

See Figure Answers.27.

CASE Operator type:

SET Left value TO Pop working stack ();

SET Ri ght value TO Pop working stack ();

SELECT Active node .operator:
CASE ' +': Push working stack (Left value + Right value);
CASE " *':
CASE . ..

SET Active node TO Active node .successor;

Figure Answers.27 Iterative interpreter code for operators.

In principle, recursive interpreters, iterative interpreters, and compiled code can give the same error mes-
sages; the difference liesin the amount of work involved in producing the message, and therewith the likeli-
hood that the work will be expended and the message produced.

Recursive interpreters usualy retain and continually update the full symbol table and can, at any moment,
produce a fully symbolic snapshot of al data used by the program, including the calling stack. They aso
test the input values to any operation extensively and catch erroneous values before disaster strikes.

Iterative interpreters usualy retain the symbol table but do not use it as a database for storing the data. A
snapshot will have to be reconstructed from the bare data, matched to the symbol table. Input data to opera-
tions are still checked extensively.

Compiled code usually does not retain the symbol table, and a separate program may be needed to pry infor-
mation from the unstructured data found in memory. The testing of input data to operationsis usualy left to
machine instructions, which may or may not react to errors by producing traps or erroneous values. Traps
are caught by code which haslittle knowledge of what went wrong; erroneous values may propagate.

Answers for Chapter 4 727

44 A self-extracting archive works exactly like the ‘compiler’ of Section 4.2.1: there, the executable file con-
tains both the AST and the interpreter. A self-extracting archive contains both the contents of the archive
and the extraction code. Often, the archive is compressed, and the extraction code also contains decompres-
sion code.

45 The program:
int Progran{] = {'D,7,’D,1,’D ,5'P ,'+ ,'P, * "1’ 0};
The interpreter:

int main(void) {
int PC = 0O;
int Instruction;

while ((Instruction = Progranf PC++]) != 0) {
switch (Instruction) {
case ' D : Expression_D(PrograniPC++]); break;
case 'P': Expression_P(Progran] PC++]); break;

case '!': Print(); break;
}

}

return O;

}

4.6 Instead of a routine Expressi on_P, we could have two routines Expressi on_P_43 and
Expressi on_P_42, with bodies

voi d Expression_P_43(void) {
int e_left = Pop(); int e_right = Pop();
Push(e_left + e_right);

}

and

voi d Expression_P_42(void) {
int e_left = Pop(); int e_right = Pop();
Push(e_left * e_right);

}

and generate

Expression_P_43();
Expression_P_42();

instead of the Expr essi on_P callsin Figure 4.14.

4.7 (a) Aswe did for the register machine, we generate code for the heaviest tree first, but now, we can only do
this for commutative operators, because we cannot exchange operands. The weight computation must
account for thistoo, as shown in Figure Answers.28.

(b) The resulting code sequence:

Push_Local #b
Push_Local #b
Mul t _Top2
Push_Local #a
Push_Local #c
Mul t _Top2
Push_Const 4
Mul t _Top2
Subtr_Top2

728 More answers to exercises

FUNCTI ON Wei ght of (Node) RETURNI NG an integer:
SELECT Node .type:

CASE Constant type: RETURN 1;

CASE Vari abl e type: RETURN 1;

CASE ...

CASE Add type:
SET Required left TO Weight of (Node .left);
SET Required right TO Weight of (Node .right);
IF Required left > Required right: RETURN Required |eft;
IF Required left < Required right: RETURN Required right;
/Il Required left = Required right
RETURN Required left + 1;

CASE Sub type:
SET Required left TO Weight of (Node .left);
SET Required right TO Weight of (Node .right);
IF Required left > Required right: RETURN Required left;
RETURN Required right + 1;

CASE . ..

Figure Answers.28 Adapted weight function for minimizing the stack height.

4.8 SeeFigure Answers.29.

FUNCTI ON Wei ght of (Node, Left or right) RETURNING an integer:
SELECT Node .type:
CASE Constant type: RETURN 1;
CASE Vari abl e type:
IF Left or right = Left: RETURN 1;
ELSE Left or right = Right: RETURN O;
CASE . ..
CASE Add type:
SET Required left TO Weight of (Node .left, Left);
SET Required right TO Weight of (Node .right, Right);
IF Required left > Required right:
RETURN Required left;
IF Required left < Required right:
RETURN Required right;
/1 Required left = Required right
RETURN Required left + 1;
CASE . ..

Figure Answers.29 Revised weight function for register-memory operations.

4.9 See Figure Answers.30; the ‘then’ gets 0.7, the ‘else’ 0.3; loop skipping gets 0.1, loop entering 0.9; the
cases get 0.4, 0.4, 0.2. Traffic at routine entry is arbitrarily set to 1. The first column gives the 17 equa-
tions; al can be solved by simple substitution, except those for e, f , and g, which need elimination. The
results are given in the second column. Note that we predict that for every time the routine is called, the
loop body A will be executed 6.3 times. Also note that the traffic out of the routine is again 1; what goesin
must come out.

4.10

411

4.12

413

4.15

4.16

4.17

4.18

4.19

Answers for Chapter 4 729

Equation Vaue
a=1 1.0
b=07a 0.7
c=03a 0.3
d="b 0.7
e =0.1 (d+f) 0.7
f =g 6.3
g =0.9 (d+f) 6.3
h=c 0.3
i =0.4h 0.12
j =0.4nh 0.12
k =0.2h 0. 06
I = 0.12
m=j 0.12
n =k 0.06
o=e 0.7
p = | +mtn 0.30
q = otp 1.0

Figure Answers.30 Traffic equations and their solution for Figure 4.97.

The flow graph is in Figure Answers.31 and the equations and their solution in Figure Answers.32. Gaus-
sian elimination will find the solution, but simple substitution suffices here: substitute h = j inj =
0. 9(g+h), yieding h = 0.9(g+h); solving for h yields h = 9g; substituting this in i =
0. 1(g+h) yieldsi g (what enters the second while loop must come out); we asohaveg = f = e
=d,i = b,anda 1. Substituting al thisind = 0. 9(a+b) yieldsg = 0. 9(1+g), which after
solving leadstog = 9. Notethat ¢ = 1. Why isthat important? The rest is straightforward substitu-
tion.

These dependencies also express the requirement that all assignments to a variable are executed in sequen-
tial, left-to-right order.

See Figures Answers.33 and Answers.34.

(a) See Figure Answers.35.
(b) The input p of the second * p++ is dependent on the output p of the first * p++ and so its dependencies
differ from those of theinput p of thefirst * p++.

See Figure Answers.36.

Sand N cannot be the same node, since that would make the dependency graph contain a cycle because S
refersto N.

A ladder sequences starts at each graph root, except when that root has an incoming dependency. Not all
roots can have incoming dependencies, or the dependency graph would be cyclic.

Doing so will destroy the contents of register | 1 and may lead to incorrect codeif | 1 is till used in another
operation.

First code x, +, + into

730 More answers to exercises

Figure Answers.31 Flow graph for static profiling of a nested while loop.

Equation Value
a=1 1.0
b =i 9.0
c = 0.1 (ath) 1.0
d =0.9 (ath) 9.0
e =d 9.0
f =e 9.0
g=f 9.0
h =j 81.0
i =0.1(g+h) 9.0
j =0.9 (g+h) 81.0

Figure Answers.32 Traffic equations and their solution for Figure Answers.31.

Load_Reg R2, R1
Add_Reg R3, R1
Add_Reg R4, R1
Store_Reg R1,x

yielding Figure Answers.37. Next codey, +, - into

Answers for Chapter 4

1 1
+ *
e

AN

b

e N
SN SN SN S
SN SN ANAN

7N\ N\

Figure Answers.33 The dependency graph before common subexpression elimination.

=<

Figure Answers.34 The dependency graph after common subexpression elimination.

Load_Reg R2, R1
Subtr_Reg R3, Rl
Add_Reg R4, R1
Store_Reg Rl,y

yielding Figure Answers.38. Then code R3, *, * into

Load_Const 2,R1
Mul t _Mem a, RL
Mul t _Mem b, R1
Store_Reg R1, R3

731

732

4.20

4.22

More answers to exercises

/\
S\,

Figure Answers.35 The dependency graph of the expression * p++.

p

position triple
1 a* a
2 a* 2
3 @ *b
4 a+ @
5 b * b
6 @ + @&
7 @ = X
8 a- @
9 @+ &
10 @ =y

Figure Answers.36 The data dependency graph of Figure Answers.34 in triple representation.

yielding Figure Answers.39. Then code R2, * into

Load_Mem a, RL
Ml t _Mem a, R1
Store_Reg R1,R2

yielding Figure Answers.40. Finaly code R4, * into

Load_Mem b, Rl
Milt_Mem b, RL
Store_Reg R1,R4

resulting in the empty dependency graph.

1. Step 2 assigns registers to nodes. |If the top node of a ladder has already been assigned to a (pseudo-
Jregister, use that register instead of R1, and mark the (pseudo-)register so it will be given area register.
Note that you can do this only a limited number of times, and that this procedure interferes with further
register allocation.

2. If thenode M in step 2 is the bottom of the ladder, use R as the ladder register in step 3.

It would be useful since it would for example add the pattern trees:

cst*(reg*reg), (reg*reg)*cst

Answers for Chapter 4 733

=<

Figure Answers.37 The dependency graph of Figure Answers.34 with first ladder sequence removed.

Figure Answers.38 The dependency graph of Figure Answers.37 with second ladder sequence removed.

4.23 Suppose the token set { a, bcd, ab, ¢, d } and the input abcd. Immediately returning the a yields 2
tokens, whereas 3 can be achieved, obviously.
Assume the entire input is in memory. Record in each item its starting position and the number of tokens
recognized so far. At each reduce item that says that N tokens have been recognized, add the I ni ti al
i tem set with token counter N+1 and the present location as starting point. Having arrived at the end of
the input, find the reduce item with the largest token counter and isolate the token it identifies. Work back-
wards, identifying tokens.

4.25 See Figure Answers.41 for the tree. A label evicts another label in the dynamic programming part when its
rewrite shows a gain on the cost or register usage scale, and no loss on the other scale. The resulting code is
shown in Figure Answers.42.

4.26 Removed, e, a, b, c. Addc withcolor 1, b with color 2, a with color 3, e with color 2, d with color 1.

734 More answers to exercises

=23

i O
O

Figure Answers.39 The dependency graph of Figure Answers.38 with third ladder sequence removed.

R’\f
O

Figure Answers.40 The dependency graph of Figure Answers.39 with fourth ladder sequence removed.

#3->reg @6RL [
#3->reg @8R2
#4->reg @3R2

+ #7->reg @4R2

#5->reg @7RL
#5, 9->mem @OR1 [
#8->reg @R2

b * #8,9->nem @2R2

->mem @RO
0 #2->reg @RL #5->reg @RL
#5,9->mem @ORL [J
4

* #6->reg @R2
->cst @RO
[0 #1->reg @RL
#1, 9->nem @R1
8

a
->cst @RO ->mem @R0
0 #1->reg @RL #2->reg @RL

#1, 9- >nem @R1

Figure Answers.41 Bottom-up pattern matching with costs and register usage.

4.27 (a) See Figure Answers.43.
(b) 3.

4.28 For the first instruction in the sequence we have 20* 2=40 combinations, using R1, R1 and R1, R2, or more
compactly {R1}, { Rl, R2}. For the second instruction we have 20*2*3=120 combinations, using
{R1, R2}, {R1, R2, R3}; for the further instructions we have 20*3*3=180 combinations each. In total

4.30

4.34

4.35

Answers for Chapter 4 735

Load_Const 8, R ;1 unit

Ml t _Mem a, R ; 6 units
St ore_Reg Rtnp ; 3 units
Load_Const 4, R ;1 unit

Ml t _Mem tmp, R ; 6 units
St or e_Reg R tmp ; 3 units
Load_Mem b, R ; 3 units
Add_Mem tnp, R ; 3 units

Tot al = 26 units

Figure Answers.42 Code generated by bottom-up pattern matching for 1 register.

a—tnmp_2ab— tnmp_bb —x —y

N2

tnp_aa

Figure Answers.43 The register interference graph for Exercise 4.27.

4800x180"2 combinations.

Estimating a weekend at 2.5 days, each of about 80000 seconds, we have about 2x10™ useconds, or 2x10%°
tests. So we want the largest N for which 4800x180"2 is smaller than 2x10%°. Now, 4800x180%2=1.5x10®
and 4800x180°2=2.7x10%, so N=4.

(a) Sincethe AST of P() actualy corresponds to the C code
void P(int i) {if (i < 1) goto _L_end; else Q); _L_end:;}

we get

{int i =0; if (i <1) goto _L_end; else); _L_end:;}
(b)

{int i =0; if (0 <1) goto L _end; else); _L_end:;}
©

{int i =0; if (1) goto _L_end; else); _L_end:;}

(d)

{int i =0; goto _L_end; _L_end:;}

(e) Elimination of unused variables. The information whether a variable is unused can be obtained through
the techniques on checking the use of uninitialized variables described in Section 3.2.2.1.

Advantages of PC-relative addressing modes and instructions are:

— they require no relocation, thus reducing the work of the linker;

— they allow position-independent code, code that can be loaded anywhere in memory, without any modif-
ications;

— they may alow shorter instructions: an offset may fit in a byte whereas a full address usually does not.
Even if it does, the assembler still has to reserve space for afull address, because the linker may modify it.

An unlimited conditional jump can be translated to a conditional jump with the contrary condition over an
unconditional jump. For example,

736

More answers to exercises

Junp_Not _Equal | abel 1 # junmp to labell if not equal
can be translated by

Junp_Equal L1 # junmp over Junp if equal
Junp | abel 1
L1:

Answers for Chapter 5

51

52

53

55

5.6

57

5.8

59

5.10

511

AssumeBegi nni ng of avail abl e menory isamultiple of 32. In Figure 5.2:

SET t he pol ynorphic chunk pointer First_chunk pointer TO
Begi nni ng of avail abl e menory + 28;

SET First_chunk pointer .size TO
(Size of available menory - 28) / 32 * 32;

In Figure 5.3:
SET Requested chunk size TO (Block size + 3) / 32 * 32 + 32;

The garbage collector will free chunks only when they are unreachable. If they are unreachable they cannot
be freed by the user since the user does not have a pointer to them any more. So it is safe to call the garbage
collector from Mal | oc() .

One can keep track of all calstomal | oc() and f r ee() during program execution, and analyze these
calls with a post-mortem program. Several leak-finding tools exist; they typically use modified versions of
mal | oc() and free() that write information about these calls to a file; the information typically
includes the address and size of the block, and a stack trace. The file is processed by an off-line program,
that finds blocks of memory that have been mallocked but not freed; the program then also prints the rou-
tinesfrom which mal | oc() was called (using the stack trace information).

How do you find this counter starting from the pointer to the record and how do you get the pointer by
which to return the block?

In the alocation of the arrays into which the code and data segments will be compiled; perhaps in the alo-
cation of the external symbol table.

In general, the garbage collection agorithms inspect pointer values, which will be (simultaneously) changed
by the application. Some garbage collection algorithms (for example two-space copying and compaction)
copy data, which is dangerous if the application can access the data in the meantime. Some algorithms
assume that the garbage collection only becomes active at specific pointsin the program (see Section 5.2.2),
which isdifficult to guarantee with a concurrent garbage collection.

Garbage collection algorithms will not handle this correctly, since they are unable to determine that the
block that p (or rather p & Ox7f ffffff) pointstoisstill reachable. Even conservative garbage collec-
tion will fail; in fact, it will probably not even recognize p as a pointer variable.

If the assignment p: =p isnot optimized away, if p pointsto achunk P with reference count 1, if P contains
a pointer to another chunk Q and if the reference count of Q is aso 1, then first decreasing the reference
count of P causes P to be freed, which causes Q to be freed. Subsequently increasing the reference count of
P will not raise the reference count of Q again and the pointer to Q in P will be left dangling. Also, on some
systems freeing P might cause compaction to take place, after which the chunk P would be gone entirely
and incrementing its reference count would overwrite an arbitrary memory location.

(c) Call number nto A will avoid the nodes that have been marked aready by calls number 1...n-1 and will
thus work on a smaller unmarked graph.

Refer to Figures Answers.44 and Answers.45. Introduce a global pointer Scan poi nt er, which points
to the first chunk that has not yet been scanned. Coalescing has been incorporated into the function

Answers for Chapter5 737

Pointer to free block of size (Block size), which starts coalescing immediately and
starts scanning at the chunk pointed to by Scan poi nt er. If that does not work, perform the marking
phase of the garbage collection only, and scan, coalesce and search from the beginning.

SET t he pol ynor phic chunk pointer Scan pointer TO
Begi nni ng of avail abl e nmenory;

FUNCTI ON Mal | oc (Bl ock size) RETURNI NG a pol ynorphi ¢ bl ock pointer:
SET Pointer TO Pointer to free block of size (Block size);
IF Pointer /= Null pointer: RETURN Pointer;

Performthe marking part of the garbage collector;

SET Scan pointer TO Begi nning of available nmenory;
SET Pointer TO Pointer to free block of size (Block size);
|F Pointer /= Null pointer: RETURN Pointer;

RETURN Sol ution to out of menory condition (Block size);

FUNCTI ON Pointer to free block of size (Block size)
RETURNI NG a pol ynor phi ¢ bl ock pointer:
/1 Note that this is not a pure function
SET Chunk pointer TO First_chunk pointer;
SET Requested chunk size TO Adnministration size + Block size;

WHI LE Chunk pointer /= One past available menory:
| F Chunk pointer >= Scan pointer:
Scan chunk at (Chunk pointer);
| F Chunk pointer .free:
Coal esce with all follow ng free chunks (Chunk pointer);
I F Chunk pointer .size - Requested chunk size >= 0:
/1 large enough chunk found:
Split chunk (Chunk pointer, Requested chunk size);
SET Chunk pointer .free TO Fal se;
RETURN Chunk pointer + Adnministration size;
/1 try next chunk:
SET Chunk pointer TO Chunk pointer + Chunk pointer .size;
RETURN Nul | pointer;

Figure Answers.44 A Mal | oc() with incremental scanning.

512 See Sikléssy (1972).

5.13 Similarities:
(2) both gather reachable nodes and copy them to the beginning of a memory segment;
(2) the resulting free space is a single contiguous block of memory;
(3) the nodes change place so all pointers have to be rel ocated.
Differences:
(2) one versus two spaces (obvioudly);
(2) depth-first (compaction) versus breadth-first (copying) traversal;
(3) compaction touches al nodes in the heap when scanning for free nodes, copying touches reachable
nodes only;
(4) compaction uses a separate phase to compute the new addresses, copying computes them on-the-fly;
(5) compaction requires an additional pointer per node to hold the ‘new’ address, copying stores the forward
address in the ‘old’ node, thus avoiding space overhead per node.

5.14 The ‘overlapping lists' in the paper are dags.

738

More answers to exercises

PROCEDURE Scan chunk at (Chunk pointer):
| F Chunk pointer .nmarked = True:
SET Chunk pointer .marked TO Fal se;
ELSE Chunk pointer .marked = Fal se:
SET Chunk pointer .free TO True;
SET Scan pointer TO Chunk pointer + Chunk pointer .size;

PROCEDURE Coal esce with all follow ng free chunks (Chunk pointer):
SET Next _chunk pointer TO Chunk pointer + Chunk pointer .size;
I F Next _chunk pointer >= Scan pointer:

Scan chunk at (Next_chunk pointer);
WHI LE Next _chunk pointer /= One past avail able nmenory
AND Next _chunk pointer .free:
/1 Coal esce them
SET Chunk pointer .size TO
Chunk pointer .size + Next_chunk pointer .size;
SET Next_chunk pointer TO Chunk pointer + Chunk pointer .size;
I F Next _chunk pointer >= Scan pointer:
Scan chunk at (Next_chunk pointer);

Figure Answers.45 Auxiliary routines for the Mal | oc() with incremental scanning.

Answers for Chapter 6

6.1
6.2

6.3

6.6

6.7

6.9

6.10
6.11

Values of type unsigned integer are aways >= 0.

In most languages we need to know if an identifier is a keyword or the name of a macro, long before its
name space is known. If we want to postpone the identification to the time that the proper name space is
known, we will need other mechanisms to solve the keyword and macro name questions.

The declarations are equivalent to:

type t1 = array[1..10] of int;
type t2 = array[1l..10] of int;
type t3 = array[1..10] of int;

A B tl;, B t2; C t3;

So A and B have the same type, B and C have different types (which are also different from the type of A
and B).

We have rvalue?V: V - rvalue. In principle, rvalue?lvalue: Ivalue could yield an Ivalue, but ANSI C
defines it to yield an rvalue. In GNU C an Ivalue results, but a warning is given under the - pedanti c

flag.
Can't be. The last scope rule forbids the creation of such values.

(a) Sizeis 24, aignment is 8.

(b) Sizeis 16, alignment is 8.

(c) This depends on what the language manual specifies, but even if the language manual does not forbid
the reorganization of record fields, there are severa reasons why a programmer may not want this: intero-
perability between languages, the modeling of 1/0 devices, etc.

See Figure Answers.46 and Answers.47.

Set union: the complication here isthat set elements must be represented only oncein the linked list. So, the
set union of two sets is constructed by first copying the first set, and then adding elements of the second set
to thelist, but only if they are not present in the first set.

Set intersection: the set intersection of two sets is constructed by creating an empty result set, and then

Answers for Chapter 6 739

zeroth_offset (A) = —(LB, xLEN_PRODUCT,
+LB,xLEN_PRODUCT,

+LB,xLEN_PRODUCT,)

Figure Answers.46 Formula for zeroth_offset(A).

base (A)+zeroth_offset (A)
+i;xLEN_PRODUCT ; +...+i,xLEN_PRODUCT,

Figure Answers.47 The address of Aliy, ..., i,].

checking for each element in the first set, whether it is also a member of the second set; if it is, we add it to
the result set, if it isnot, we ignoreit.

6.12 See Figure Answers.48.

| sShape_Shape_Shape | sShape_Shape_Shape
| sRect angl e_Shape_Rect angl e | sRect angl e_Shape_Rect angl e
| sSquar e_Shape_Shape | sSquar e_Shape_Squar e
Sur f aceAr ea_Shape_Rect angl e Sur f aceAr ea_Shape_Rect angl e
method table for Rect angl e method table for Squar e

Figure Answers.48 Method tables for Rect angl e and Squar e.

6.13 At run time, a class may be represented by a class descriptor which contains, among others, the method
table of the class. Such a class descriptor could also contain a pointer to the class descriptor of its parent
class. An object then contains a reference to its class descriptor instead of a reference to the method table.
Then, the implementation of thei nst anceof operator becomes easy, see Figure Answers.49.

6.14 The code for these calsis:

(*(e->di spatch_table[0]))(e);
(*(e->dispatch_table[2]))((class D *)((char *)e + sizeof(class Q)));
(*(e->dispatch_table[3]))((class D *)((char *)e + sizeof(class Q)));

Note that although n4 isredefined in class E, it still requires a pointer to an object of class D.
6.15 The code for method nb is:

740

6.16

6.18

More answers to exercises

FUNCTI ON I nstance of (Obj, Class) RETURNING a bool ean;
SET Object Class TO Obj. O ass;
WHI LE Object Class /= No class:
IF Object Class = C ass:
RETURN true;
ELSE Object Class /= C ass:
SET Obj ect Class TO Cbject Class .Parent;
RETURN f al se;

Figure Answers.49 Implementation of thei nst anceof operator.

void nb_E E(Class_E *this) {
*(int *) ((char *)this + this->index_table[5]) =
*(int *) ((char *)this + this->index_table[4]) +
*(int *) ((char *)this + this->index_table[1]);

}

For example, when the caller calls severa routines consecutively, the ‘caller saves' scheme allows saving
and restoring only once, whereas the ‘ callee saves' scheme has no option but to do it for every call. Also, in
the ‘callee saves' scheme the callee has to save and restore all registers that might be needed by any caller,
whereas the ‘caller saves' scheme allows for saving and restoring only those registers that are needed for
this particular caller, at this particular cal site.

See the code in Figure Answers.50.

void do_elenments(int n, int element()) {
int elem= read_integer();

int new elenment(int i) {
return (i == n ? elem: elenent(i));
}
if (elem==0) {
printf("median = %0, elenment((n-1)/2));

}
el se {

do_el ements(n + 1, new_el enent);
}

}

voi d print_nedian(void) {
int error(int i) {
printf("There is no el ement number %0, i);
abort();
}

do_el ements(0, error);

Figure Answers.50 Code for implementing an array without using an array.

6.19 It cannot, since the same closure may be fully curried and invoked several times, and different activation

records have to result.

6.23

6.24

6.25

6.26

6.27

6.28

6.29
6.30

Answers for Chapter 6 741

The binary tree must be balanced, or the generated code could be as inefficient as the linear search scheme
described earlier. If the tree has the smallest case label on top, al other case labels will be in the right
branch, and the generated code is as inefficient as linear search in a sorted list.

We consider the following case statement:

CASE case expression | N
I,: statement sequence,

I,; statement sequence,
ELSE else- statement sequence
END CASE;

The hash table entries consist of (I, | abel _k) pairs, and the hash table keys are the |, values. We then
generate the code of Figure Answers.51.

tmp_hash_entry := get_hash_entry(case expression);
IF tnp_hash_entry = NO_ENTRY THEN GOTO | abel _el se;
GOTO tnp_hash_entry. | abel ;
| abel _1:
code for statement sequence,
GOTO | abel _next;
| abel _n:
code for statement sequence,
GOTO | abel _next;

| abel _el se:
code for else- statement sequence
| abel _next:

Figure Answers.51 Intermediate code for a hash-table implementation of case statements.

A possible trandation of the repeat statement to intermediate code is:

repeat _| abel :
code for statement sequence
code to eval uate Boolean expression i nto condition register
I F NOT condition register THEN GOTO repeat _| abel ;

For the two while statement schemes, the cont i nue_| abel should be placed at thet est _I abel ; the
br eak_I abel should be placed at the end (where end_I abel isin the first scheme). In the general
for-statement scheme of Figure 6.40, the br eak | abel should be placed a the end_| abel ; the
conti nue_| abel should be placed right in front of the decrement of t np_I| oop_count .

A continue statement transfers control to expr 3 in the body of the for-statement, but to expr 2 in the body
of the while-statement, as shown in Figure Answers.52.

A continue statement inside the body of a for-loop would have the effect of a jump to
forl oop_continue_l abel : expr 3 would still be evaluated before continuing with the next iteration;
inawhileloop, the effect isajump towhi | el oop_conti nue_| abel .

This may cause overflow, because the controlled variable may then be incremented beyond the upper bound
(and thus possibly beyond the maximum representable value).

See Figure Answers.53.

Pushing the last parameter first makes sure that the first parameter ends up on the top of the stack, regard-
less of the number of parameters. Unstacking the parameters will therefore yield them in textual order.

742

6.31

6.32

More answers to exercises

expr1;
while (expr2) {
body;
forloop_continue_l abel :
expr3;
/* whil el oop_continue_| abel: */
}

Figure Answers.52 A while loop that is exactly equivalent to the for-loop of Figure 6.41.

i := lower bound;

trp_ub : = upper bound - unrolling factor + 1;

IF i > tnp_ub THEN GOTO end_| abel ;

trmp_l oop_count := (tnp_ub - i) DIV unrolling factor + 1;
| oop_I abel :

code for statement sequence

i =0 + 1

code for statement sequence
=0+ L /1 these two |ines unrolling factor tinmes
tnp_l oop_count := tnp_l oop_count - 1;
|F tnp_l oop_count = 0 THEN GOTO end_| abel ;
GOTO | oop_| abel ;
end_| abel :

Figure Answers.53 Loop-unrolling code.

A divide-by-zero exception may occur for the first division; the handler may execute any code, for example
perform assignmentsto A and B:

begin
X
Y :
exception
when DI VI DE_BY_ZERO ERROR =>
B:=1;, A:=A- 1;

Al B;
Al B;

end;
The ‘optimized’ code will then clearly behave differently from the original code.

Two new operations must be supported: instantiation of a generic routine which is a parameter, and passing
ageneric routine as a parameter to an instantiation. The consequences from a compiler construction point of
view are modest. When implementing instantiation through expansion, the first instantiation to be dealt
with resides within a non-generic unit. Therefore, a generic routine parameter is available as an AST, which
can be copied and processed just asthe AST of an ordinary generic unit.

One issue that must be dealt with, weather the language has generic routine parameters or not, is cycle
detection: when one generic unit contains an instantiation of another generic unit, the result is a chain of
instantiations, which must be terminated by the instantiation of a generic unit which does not contain further
instantiations. If thisis not the case, the implementation through expansion scheme will fail. Without gen-
eric routine parameters, detecting this situation is easy: when a generic unit occurs twice on the instantiation
chain, there isa cycle. With generic routine parameters, when an identical instantiation (same generic unit
and same instantiation parameters) occurs twice on the instantiation chain, thereisacycle.

Answers for Chapter 7 743

When implementing instantiation through dope vectors, a generic routine has a code address, and can be
passed as a parameter, just like an ordinary routine.

Answers for Chapter 7

7.2 Thetypeoffol dr is
foldr :: (a->b ->b) ->b ->[a] ->b

7.3 Thedefinition of the dot operator is
dot :: (a ->b) ->(c ->a) ->c ->b
dot f g x =f (g x)

7.4 The functional-core equivalent of "1 i st" is(Cons "I’ (Cons 'i’' (Cons 's' (Cons 't’
[1)))) . thatof [1..481] isrange 1 481.

7.5 SeeFigure Answers.54.

unique al = if (_type_constr al == Cons &&

_type_constr (_type_field 2 al) == Cons) then
| et
a = _type_field 1 al
b = _type_field 1 (_type_field 2 al)
cs = _type_field 2 (_type_field 2 al)
in
if (a ==Db) then a : unique cs
el se a : unique (b:cs)
el se
al

Figure Answers.54 A functional-core equivalent of the function uni que.

7.6 (& One should not write functions that fail for some arguments (but sometimes one has to). (b) One should
not call afunction with arguments for which it will fail (but that is sometimes hard to know).

7.8 See Figure Answers.55.

gsort [] =[]
gsort (x:xs) = gsort (mappend gleft xs) ++ [x]
++ gsort (nmappend qright xs)
wher e
gleft y =if (y <x) then [y] else []
gright y = if (y > x) then [y] else []

Figure Answers.55 A functional-core equivalent of the function gsort .

7.9 SeeFigure Answers.56.

7.10 Any recursive function will fail to terminate when its if-then-else expression is replaced by an applicative-
order function that implements the conditional, since applicative-order reduction will evaluate both the then-

744

711

7.12

7.13

7.15
7.16

More answers to exercises

gsort [] =11
gsort (x:xs) = gsort (mappend (gleft x) xs) ++ [X]
++ gsort (mappend (qgright x) xs)

gleft xy =1if (y <x) then [y] else []
gright x y =if (y > x) then [y] else []

Figure Answers.56 A functional-core lambdarlifted equivalent of the function gsort .

and else-expressions before calling the conditional function:
cond bt e=if bthent else e

fac n = cond (n==0) 1 (n * fac (n-1))

The following program uses the value of the expression f ac 20 2%° times:

tree 0 val = val
tree nval =let t =tree (n-1) val in t*t

main = print (tree 10 (fac 20))

Eval () must be extended with an additional case to handle the indirection nodes:

case | ND:
node = node->nd. i nd;
br eak;

Also, the update must be changed into:

root->tag = | ND; /* update */

root ->i nd = node;
C does not alow forward references to local variables.
Pnode rep(Pnode *arg)

{
Pnode n = arg[O0];
Pnode | st = Cons(n, NULL);
I st->cons.tl = Ist;
return |st;

}

Thefunction f isstrictinp only.

Substitute equal _eval uat ed, nul _eval uat ed, and sub_eval uat ed by their operators, which is
alowed due to strictness. Thisis the partial evaluation component: actions that will certainly be performed
at run time are done at compiletime. Result:
Pnode fac_eval uat ed(Pnode _arg0) {

Pnode n = _argo;

return Num(n->nd. num == Num(0) - >nd. nun) - >nd. num ? Nun(1)
Num(n->nd. num *
fac_eval uat ed(Nun{n->nd. num - Num(1)->nd. num)->nd. nun;
}

ReplaceB ? F(x) : F(y) by F(B ? x : y); replace Nun(x) - >nd. numby X; result:

Answers for Chapter 7 745

Pnode fac_eval uat ed(Pnode _arg0) {

Pnode n = _argO;
return Num(
n->nd.num==0 ? 1
n->nd. num * fac_eval uat ed(Num(n->nd. num - 1))->nd. num
)
}
Introduce i nt n_num == n->nd. num in fac_eval uated() and substitute; introduce i nt

fac_unboxed(int n) {return fac_evaluated (Num(n))->nd.num}; replace
fac_eval uated (Nun(n))->nd. numbyfac_unboxed(n) infac_eval uat ed();in-linethe
cal of fac_eval uat ed inf ac_unboxed() ; result:

int fac_unboxed(int n_arg) {
Pnode n = Nun(n_arg);
int n_num = n->nd. num
return (
Num(n_num == 0 ? 1 : n_num* fac_unboxed(n_num- 1))
) ->nd. num
}

Clean up the in-lining debris; replace more Nun{(x) - >nd. numby Xx; result:

int fac_unboxed(int n_arg) {
return n_arg == 0 ? 1 : n_arg * fac_unboxed(n_arg - 1);

}

7.17 We need zero or more temporary locations Tenp[] at runtime. Store the assignment set A in the variable
Assi gnment set. First remove from Assi gnnent set all assignments of the form P_newf i]
= P_old[i],foranyi . Then usethe agorithm from Figure Answers.57.

WH LE Assignnent set /= Enpty assignnent set:
/'l Get a doabl e assignnent:
IF there is an Index SUCH THAT

(P_new{Index] := a) is in the Assignment set AND
P_ol d[I ndex] occurs at nost in a:
/1 P_new I ndex] := a is doable:

SET Next TO I ndex;
ELSE there is no such Index:
/1 Make room for a doabl e assignnent:
CHOOSE a (P_newf I ndex] := a) FROM the Assignnment set;
CHOOSE Scratch SUCH THAT
Tenp[Scratch] does not occur in the Assignnment set;
Generate code to nove P_old[Next] to Tenp[Scratch];
Substitute Tenp[Scratch] for P_ol d[Next]
in the Assignnent set;
/1 Now P_new | ndex] := a is doable:
SET Next TO I ndex;
Generate code for (P_new Next] := a);
Renmove (P_new{ Next] := a) fromthe Assignnment set;

Figure Answers.57 Outline code for doing in situ assignments.

Extended exercise: The choices of the assignment from Assi gnnment set and of the temporary variable
influence the amount of code and the number of temporary variables needed. Think of reasonable choice
criteria.

746 More answers to exercises

7.18 Although the ++ (append) operator is associative, the amount of work differsfora ++ (b ++ c) and
(a ++ b) ++ c. Thisisa consequence of the append operator, which essentially creates a copy of its
first argument to ‘replace’ the null pointer with a pointer to the second list. In(a ++ b) ++ c thelista
is copied twice, whereas only one copy is required fora ++ (b ++ c¢). Transforming mappend into
an accumulating argument function would cause the sublists to be copied many times (depending on their
position).

7.19 There is no reduction in heap space since al lazy expressions alocated in the heap consist of a (built-in)
function with two arguments, which is the break-even point. The benefit isin the graph reducer, which does
not need to unwind application spines, but can call the suspended function immediately.

Answers for Chapter 8

8.1 For ?- grandparent(arne, Z) left-to-right is more efficient. It first binds Z to j anes and tries
parent (j ames, Z),which fails. Next, it binds Z to sachi ko, and tries par ent (sachi ko, Z2),
which succeeds with Z=rivka. With a right-to-left search, the system will first try to solve
parent (Y, Z), where both Y and Z are unbound. So, the program will try all possible combinations of Y
and Z for which par ent (Y, Z) holds, until it finds a combination for which par ent (ar ne, Y) holds.
With the program of Section 8.1, the fourth combination (sachi ko, rivka) succeeds. For
?- grandparent (X, rivka), the situation is reversed, as now the first argument is unbound. So,
there is no single optimal search order.

8.2 Theinitial stack isagain
gp(arne, X), <<(" X", X)
Applying ‘Attach clauses with optimization resultsin:
[gp(arne, X) ?= gp(X1,Z1)], pa(X1, Y1), pa(Yl, Z1), <<(" X", X)
Unification resultsin:
[gp(arne, X) == gp(arne, X)], pa(arne, Y1), pa(Y1, X), <<("X", X)
Then, ‘Match’ removes the two unified goals:
pa(arne, Y1), pa(Y1, X), <<(" X", X)
Applying ‘Attach clauses with optimizations resultsin:

[pa(arne, Y1) ?= pa(arne,janes)], pa(Yl, X), <<("X", X)
[pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)

Unification on the top entry gives:

[pa(arne, janes) ?= pa(arne,janes)], pa(janes, X), <<("X", X)
[pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)

‘Match’ then removes the unified goals:

pa(j ames, X), <<("X", X)
[pa(arne, Y1) ?= pa(arne,sachiko)], pa(Yl, X), <<("X", X)

‘Attach clauses' on the top entry leaves no entries, so we are left with
[pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)
which after unification and matching resultsin

pa(sachi ko, X), <<(" X", X)

Again an ‘Attach clauses' isrequired (with optimizations):

[pa(sachi ko, X) ?= pa(sachiko, rivka)], <<("X", X)

8.4

85

8.7

8.8
8.9
8.10
8.11

Answers for Chapter 8 747

Unification succeeds with X=r i vka:

[pa(sachi ko, rivka) == pa(sachi ko, rivka)], <<("X", rivka)
‘Match’ removes the unified goals, leaving us with a display goal:

<<(" X", rivka)

An effective optimization indeed.

The new paradigm implements breadth-first search rather than depth-first search. This usually takes (much)
more time, but will find a solution if one exists, unlike depth-first search which may work itself in an infin-
ite branch of the search tree. The discussed optimizations are all applicable to some degree.

The only interpreter instruction that may be affected is ‘Unify’. Perhaps surprisingly, during unification a
relation name can be handled just like a constant.

See Figure Answers.58. The code is an improvement over that of Figure 8.39 since it scans the list itera
tively whereas naive application of uni fy_st ruct ur es() would scan the list recursively.

int unify_lists(struct list *I_goal, struct list *I_head) {
int counter;
if (I _goal->arity !=1_head->arity) return O;
for (counter = 0; counter < |_head->arity; counter++) {
if (lunify_terms(
| _goal - >conponent s[counter], | _head->conponents[counter]
)) return O;

}

return 1,

Figure Answers.58 C code for the unification of two lists.

EtoC CtoB,DtoB,Bto A

The number of values returned in general is unbound, so an infinite list may have to be returned.
See Figure Answers.59

Replace the code segment

/* translation of ’parent(Y,Zz).’ */
void first_gp_2_clause_1_goal _3(void) {
parent _2(Y, goal _arg2, goal _list_tail);

}
in Figure 8.24 by

748 More answers to exercises

voi d intersect(
void listl(void (*Action)(int v)),
void list2(void (*Action)(int v)),
void (*Action)(int v)

void in_list2(int v) {
void equal _to_v(int v2) {
if (v == v2) Action(v);
}

}
listl(in_list2);

list2(equal _to_v);

Figure Answers.59 A list procedure that implements integer list intersection.

/* translation of 'parent(Y,2z),!." */
void first_gp_2_clause_1_goal _3(void) {
/* translation of "!.’ */

void first_gp_2_clause_1_goal _4(void) {
goal _list_tail();
goto L_cut;

}

/* translation of 'parent(Y,2),’ */
parent _2(Y, goal _arg2, first_gp_2_clause_1_goal _4);
}

8.12 The asserts and retracts should not be undone by backtracking. Since the data structure in which the
asserted clauses are kept and the corresponding counters (for example,
nunber _of _cl auses_added_at _end_f or _parent _2 in Figure8.25) are globa variables, no
backtracking will occur, as required.

814 (g Trandate..., var(X), a. to
built_in_var(X, routine_for_a);

withbui I t _i n_var () defined asin Figure Answers.60.

void built_in_var(Term*t, Action goal _list_tail) {
Term *arg = deref(t);

if (arg->type == Is_Variable) {
goal _list_tail();

}

Figure Answers.60 A C routine for implementing bui | t _i n_var ().

(b) See Figure Answers.61

8.15 A first implementation is shown in Figure Answers.62 where Ter m *put _i nt eger (i) creates a con-
stant term with the value|i , but the code needs optimization.

Answers for Chapter 9 749

void built_in_is(Term*tl, Term*t2, Action goal _list_tail) {
Term *arg = deref(t1);
Term *expr = eval uate_expression(t2);

if (arg->type == Is_Variable) {
arg->termvariable.term = expr;
goal _list_tail();
arg->termvariable.term= 0;

}
el se
if (arg->type == Is_Constant
&% atoi (arg->termconstant) == atoi (expr->term constant)
) |
goal _list_tail();
}

Figure Answers.61 A Croutine for implementing bui I t _i n_i s().

voi d built_in_between(
Term*t1l, Term*t2, Term *t3,

Action goal _list_tail
) {
Term *arg = deref(t1);
Term *exprl = eval uate_expression(t2);
Term *expr2 = eval uat e_expression(t3);
if (arg->type == Is_Variable) {
int from= atoi(exprl->termconstant);
int to = atoi (expr2->termconstant);
int i;
for (i =from i <to; i++) {
arg->termvariable.term = put_integer(i);
goal _list_tail();
arg->termvariable.term= 0;
}
}
el se
if (arg->type == Is_Constant
&% atoi (exprl->termconstant) <= atoi(arg->term constant)
&& atoi(arg->termconstant) <= atoi (expr2->term constant)
) |
goal _list_tail();
}
}

Figure Answers.62 A first implementation of acompiled bet ween.

Answers for Chapter 9

9.1 No; shared variables are easier to use than message passing. Also, on a shared-memory machine, shared-

750

9.2

9.3

9.4

9.5

9.6

9.7

9.9

9.10

9.11

More answers to exercises

variable programs often get better performance than message passing programs, because message passing
programs do more copying.

To send amessage ne g to processor P, do:

out ("message", "P", nsg);

If processor P wants to receive a message, it executes:
in("nmessage", "P"', ? &rBQ);

To creste ashared variable X with initial value V execute:

out ("shared variable", "X, V);

To read the value of the shared variable into alocal variable, execute:
read("shared variable", "X', ? &ar);

To write anew value into the variable, execute:

in("shared variable", "X", ? &ar); /* discard old value */
out ("shared variable", "X', newalue);

Figure 9.4 suggests that most of the thread state is independent of the CPU architecture, except maybe for
pointer sizes. However, the register information depends strongly on the CPU type. Some CPUs, for exam-
plethe Intel architectures, have few registers to save, while others, for example the Sparc, have many regis-
ters.

No; the lock that is used to protect the administration can use spinning, because the operations on the list are
very simple and will not block for along time.

First try to acquire the lock severa times using busy waiting; if it till is taken after a certain number of
tries, then do athread switch. This will work efficiently for fine-grained locks, which are acquired for only
avery short time.

(a) The first operation that succeeds in acquiring the monitor lock will continue. The second operation,
however, will block on the monitor lock, and thus cannot continue until the first operation has released the
lock. Thus, although the two operations could in principle be executed simultaneously, the implementation
of amonitor runs them sequentially.

(b) 1. Use symbalic interpretation to find those operations that are read-only. 2. Use a multi-state lock to
protect the monitor: nobody inside, some readers inside, some readers inside and one or more writers wait-
ing, and one writer inside.

Without this restriction, a message sent to a port can be accepted by many different processors, so the run-
time system would have to communicate with different processors to check which one currently has a pro-
cess that is willing to receive a message from the port. With the restriction, the run-time system merely
needs to maintain a mapping between ports and processors; a message sent to a port is sent to the processor
currently listening to the port.

The first case is fairly easy to implement: the run-time system just checks among the messages that have
been sent to this process whether there is one that matches the criteria. This can be implemented without
doing any extra communication. In the second case, the run-time system would have to communicate with
other processors, to seeif they have a process that is ready to receive.

It is difficult to copy the stack of athread, because there may exist variables that point into the stack. In C,
for example, it is possible to take the address of alocal variable (stored on the stack) and store this value in
aglobal variable. If the stack is copied to a new region in memory, the global variable will still point to the
location in the original stack. So, migrating a stack from one memory region to another is hard to imple-
ment transparently.

Since X contains a thread, it is harder to migrate, since threads always have a state that has to be migrated
(for example, a stack); moreover, thread migration has the same implementation difficulty as stack migra-
tion, as described in the answer to Exercise 9.10. Migrating object Y is easier and less expensive, since it

9.12

9.13

9.14

9.15

9.16

Answers for Appendix A 751

does not contain a thread. On the other hand, if multiple active objects (like X) located on different proces-
sors do operations on object Y, object Y will repeatedly be moving between these processors. In this case, it
may be more efficient to move the active objects to the processor of Y.

Suppose two different processes do a write operation on two different objects, X and Y, with different pri-
mary copies. Each primary copy broadcasts the operation to other processors containing a copy. The two
broadcast messages, however, are not ordered relative to each other, so some processors may get the update
of X first while others get the update of Y first, resulting in inconsistency. With totally ordered broadcast,
al broadcasts are ordered, so either the update of X arrives first at al processors, or the update of Y arrives
first at all processors.

(a) Hash-based: almost all CPUs will do 3 point-to-point communications to the same CPU, the one contain-
ing the max tuple. Broadcast outs: all CPUs will do 2 broadcasts (i n and out) and one local operation
(r ead). Do outslocaly: aimost all CPUs will do 2 broadcasts (for i n and r ead).

(b) Optimized operations use some form of spanning tree to collect the result; every CPU sends a point-to-
point message to its parent in the tree, the parent takes the maximum and sends it to its parent, and so on,
until the result reaches the root of the tree. The root then does a broadcast. This is more efficient than the
Linda version.

The matching tuples may be on different processors; other Tuple Space operations should be prevented
from executing whilethef et ch_al | () isbeing executed.

No, al statements assign to different elements of A. There would have been a dependency between the first
two assignments if the upper bound of the loop had been 10.

The cache performance of the transformed loops will be much worse than that of the original code, assum-
ing that arrays are stored in row-order in memory. The reason is that cache entries are always fetched in
blocks of contiguous memory words, called cachelines. If the cache istoo small to contain the entire array,
the transformed code will repeatedly experience cache misses. On every miss, it will fetch a cache line, but
only use one word of it. The original code will use the entire cache line, and thus get fewer cache misses,
because it accesses contiguous words in memory.

Answers for Appendix A

Al

(a) In Java, C++, and probably in most other object-oriented languages, the * constructor’ is not a constructor
at al but rather an initializer. The rea constructor is the new, and when it has finished constructing the
object (building the house), the constructor is called to initialize it (move in the furniture). In Expr es-

sion Program = new Expression();,thenewallocates space for an Expr essi on, which will
not be large enough to hold any of its extended subtypes, and the constructor cannot stretch this space after-
wards. Also, it isthe newthat returns the object (or a pointer to it), not the constructor.

(b) Its constructor should be areal constructor, in which the programmer can allocate the space, possibly for
asubtype, initialize itsfields, and return the constructed object.

References

Aho, A. V., Ganapathi, M., and Tjiang, S. W. K. (Oct. 1989). Code generation using tree pattern matching and
dynamic programming. ACM Trans. Programming Languages and Systems, 11(4), 491-516

Aho, A. V. and Johnson, S. C. (March 1976). Optimal code generation for expression trees. J. ACM, 23(3),
488-501

Aho, A. V., Johnson, S. C., and Ullman, J. D. (Jan. 1977). Code generation for expressions with common
subexpressions. J. ACM, 24(1), 146-160

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques and Tools. Addison-Wesley

Aho, A. V. and Ullman, J. D. (1973). The Theory of Parsing, Translation and Compiling, Vol. I: Parsing, Vol. II:
Compiling. Prentice Hall

Ahuja, S., Carriero, N., and Gelernter, D. (Aug. 1986). Linda and friends. |EEE Computer, 19(8), 26-34

Ait-Kaci, H. (1991). Warren's Abstract Machine — A Tutorial Reconstruction. MIT Press

Almasi, G. S. and Gottlieb, A. (1994). Highly Parallel Computing. 2nd Edn. Benjamin/Cummings

Anderson, J. P. (March 1964). A note on some compiling algorithms. Comm. ACM, 7(3), 149-150

Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. (Oct. 1991). Scheduler activations: Effective
kernel support for the user-level management of paralelism. In 13th ACM Symposium on Operating Systems
Principles (Edward D. Lazowska, ed.), pp. 95-109. ACM

Andrews, G. R. (March 1991). Paradigms for process interaction in distributed programs. ACM Computing
Surveys, 23(1), 49-90

Anonymous (1840). Des Freiherrn von Miinchhausen wunderbare Reisen und Abentheuer zu Wasser und zu
Lande. Dieterichsche Buchhandlung, Gottingen

Appel, A. W. (1987). Garbage collection can be faster than stack allocation. Information Processing Letters, 25,
275-279

Appdl, A. W. (1992). Compiling with Continuations. Cambridge University Press

Appel, A. W. (1997). Modern Compiler Implementation in C/ML/Java. Cambridge University Press

Appel, A. W. and Supowit, K. J. (June 1987). Generalizations of the Sethi—Ullman agorithm for register
allocation. Software — Practice and Experience, 17(6), 417-421

Assmann, W. (Oct. 1992). Another solution of scoping problems in symbol tables. In Compiler Construction, 4th
International Conference, CC'92 (U. Kastens and P. Pfahler, ed.), pp. 66-72. Springer-Verlag

Austin, T. M., Breach, S. E., and Sohi, G. S. (June 1994). Efficient detection of all pointer and array access errors.
ACM S GPLAN Notices, 29(6), 290-312

Bacon, D. F., Graham, S. L., and Sharp, O. J. (Dec. 1994). Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4), 345-420

Bal, H. E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Riihl, T., and Kaashoek, M. F. (Feb. 1998).
Performance evaluation of the Orca shared-object system. ACM Trans. Computer Systems, 16(1), 1-40

752

References 753

Bal, H. E. and Grune, D. (1994). Programming Language Essentials. Addison-Wesley

Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S. (March 1992). Orca: A language for parallel programming of
distributed systems. |EEE Trans. Software Engineering, 18(3), 190-205

Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. (Sept. 1989). Programming languages for distributed computing
systems. ACM Computing Surveys, 21(3), 261-322

Barach, D. R., Taenzer, D. H., and Wells, R. E. (May 1982). A technique for finding storage allocation errors in
C-language programs. ACM SIGPLAN Notices, 17(5), 16-23

Barrett, D. A. and Zorn, B. G. (June 1995). Garbage collection using a dynamic threatening boundary. ACM
SIGPLAN Notices, 30(6), 301-314

Baskett, F. (April 1978). The best simple code generation technique for while, for, and do loops. ACM SIGPLAN
Notices, 13(4), 31-32

Bell, J. R. (June 1973). Threaded code. Commun. ACM, 16(6), 370-372

Ben-Ari, M. (July 1984). Algorithms for on-the-fly garbage collection. ACM Trans. Programming Languages and
Systems, 6(3), 333-344

Bernstein, R. L. (Oct. 1985). Producing good code for the case statement. Software — Practice and Experience,
15(10), 1021-1024

Bertsch, E. and Nederhof, M.-J. (Jan. 1999). On failure of the pruning technique in ‘Error repair in shift-reduce
parsers . ACM Trans. Programming Languages and Systems, 21(1), 1-10

Bhoedjang, R. A. F., Riihl, T., and Bal, H. E. (Nov. 1998). User-level network interface protocols. |IEEE
Computer, 31(11), 53-60

Bird, R. J. (1998). Introduction to Functional Programming using Haskell. 2nd Edn. Prentice-Hall Europe

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1975). SMULA begin. Petrocelli/Charter

Bjornson, R., Carriero, N., Gelernter, D., and Leichter, J. (Jan. 1988). Linda, the Portable Parallel. Technical
Report RR-520, Y ale University

Blume, W., Dodlo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T., Lee, J., Padua, D., Paek, Y.,
Pottenger, B., Rauchwerger, L., and Tu, P. (Dec. 1996). Parallel programming with Polaris. IEEE Computer,
29(12), 78-83

Boehm, H.-J. (June 1993). Space-efficient conservative garbage collection. ACM SIGPLAN Notices, 28(6),
197-206

Boehm, H.-J. and Weiser, M. (Sept. 1988). Garbage collection in an uncooperative environment. Software —
Practice and Experience, 18(9), 807-820

Boyd, M. R. and Whalley, D. B. (June 1993). Isolation and analysis of optimization errors. ACM SIGPLAN
Notices, 28(6), 26-25

Boyland, J. and Castagna, G. (Oct. 1997). Parasitic methods — Implementation of multi-methods for Java. ACM
SIGPLAN Notices, 32(10), 66-76

Briggs, P., Cooper, K. D., Kennedy, K., and Torczon, L. (July 1989). Coloring heuristics for register allocation.
ACM S GPLAN Notices, 24(7), 275-284

Brooker, R. A., MacCdlum, I. R., Morris, D., and Rohl, J. S. (1963). The compiler compiler. Annual Review
Automatic Programming, 3, 229-322

Bruno, J. and Sethi, R. (July 1976). Code generation for a one-register machine. J. ACM, 23(3), 502-510

Burn, G. L. (1991). Lazy Functional Languages: Abstract Interpretation and Compilation. Pitman

Carriero, N. and Gelernter, D. (Sept. 1989). How to write parallel programs: A guide to the perplexed. ACM
Computing Surveys, 21(3), 323-357

Chaitin, G. J,, Audander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., and Markstein, P. W. (1981).
Register alocation via coloring. Computer Languages, 6(1), 45-57

Chapman, N. P. (1987). LR Parsing: Theory and Practice. Cambridge University Press

Cheney, C. J. (Nov. 1970). A non-recursive list compacting algorithm. Commun. ACM, 13(11), 677-678

Cocke, J. and Kennedy, K. (Nov. 1977). An agorithm for reduction of operator strength. Commun. ACM, 20(11),
850-856

Cohen, J. (1981). Garbage collection of linked data structures. ACM Computing Surveys, 13(3), 341-367

Collins, G. E. (Dec. 1960). A method for overlapping and erasure of lists. Commun. ACM, 3(12), 655-657

Colomb, R. M. (March 1988). Assert, retract and external processes in Prolog. Software — Practice and
Experience, 18(3), 205-220

Conway, M. E. (July 1963). Design of a separable transition-diagram compiler. Commun. ACM, 6(7), 396-408

754 References

Cooper, K. D., Hall, M. W.,; and Torczon, L. (March 1992). Unexpected side effects of inline substitution: A case
study. ACM Letters on Programming Languages and Systems, 1(1), 22-32

Coulouris, G., Dollimore, J., and Kindberg, T. (1994). Distributed Systems — Concepts and Design. 2nd Edn.
Addison-Wedley

Davidson, J. W. and Fraser, C. W. (June 1984a). Automatic generation of peephole optimizations. ACM SIGPLAN
Notices, 19(6), 111-116

Davidson, J. W. and Fraser, C. W. (Oct. 1984b). Code selection through object code optimization. ACM Trans.
Programming Languages and Systems, 6(4), 505-526

Davidson, J. W. and Whalley, D. B. (Jan. 1989). Quick compilers using peephole optimizations. Software —
Practice and Experience, 19(1), 79-97

Debray, S. K. (1994). Implementing logic programming systems — The quiche-eating approach. In
Implementations of Logic Programming Systems (E. Tick and G. Succi, ed.), pp. 65-88. Kluwer Academic

DeRemer, F. L. (July 1971). Simple LR(k) grammars. Commun. ACM, 14(7), 453-460

DeRemer, F. L. (1974). Lexica analysis. In Compiler Construction, An Advanced Course (F.L. Bauer and J.
Eickel, ed.), pp. 109-120. Springer-Verlag

Dewar, R. (June 1975). Indirect threaded code. Commun. ACM, 18(6), 330-331

Dijkstra, E. W. and Lamport, L. (Nov. 1978). On-the-fly garbage collection: an exercise in cooperation. Commun.
ACM, 21(11), 966-975

Douence, R. and Fradet, P. (March 1998). A systematic study of functional language implementations. TOPLAS,
20(2), 344-387

Driesen, K. and Holzle, U. (Oct. 1995). Minimizing row displacement dispatch tables. ACM SIGPLAN Notices,
30(10), 141-155

DuJardin, E., Amiel, E., and Simon, E. (Jan. 1998). Fast algorithms for compressed multimethod dispatch tables.
ACM Trans. Programming Languages and Systems, 20(1), 116-165

Dybvig, R. K. (1996). The Scheme Programming Language: ANS Scheme. 2nd Edn. Prentice Hall

Earley, J. (Feb. 1970). An efficient context-free parsing algorithm. Commun. ACM, 13(2), 94-102

Engelfriet, J. (1984). Attribute grammars: attribute evaluation methods. In Methods and Tools for Compiler
Construction (B. Lorho, ed.), pp. 102-138. Cambridge University Press

Engelfriet, J. and De Jong, W. (1990). Attribute storage optimization by stacks. Acta Informatica, 27, 567-581

Farrow, R. (June 1984). Sub-protocol-evaluators for attribute grammars. ACM SIGPLAN Notices, 19(6), 70-80

Farrow, R. and Yellin, D. (1986). A comparison of storage optimizations in automatically generated attribute
evaluators. Acta Informatica, 23, 393-427

Feijs, L. M. G. and Van Ommering, R. C. (Aug. 1997). Abstract derivation of transitive closure algorithms.
Information Processing Letters, 63(3), 159-164

Fortes Gélvez, J. (Oct. 1992). Generating LR(1) parsers of small size. In Compiler Construction, 4th International
Conference, CC'92 (U. Kastens and P. Pfahler, ed.), pp. 16-29. Springer-Verlag

Fraser, C. W. and Hanson, D. R. (1995). A Retargetable C Compiler — Design and Implementation.
Benjamin/Cummings, Redwood City, Ca.

Freeman, E., Hupfer, S., and Arnold, K. (1999). JavaSpaces — Principles, Patterns, and Practice. Addison-
Wesley

Freiburghouse, R. A. (Nov. 1974). Register allocation via usage counts. Commun. ACM, 17(11), 638-642

Geurts, L., Meertens, L., and Pemberton, S. (1989). The ABC Programmer’s Handbook. Prentice Hall

Goldberg, B. (June 1991). Tag-free garbage collection for strongly typed programming languages. ACM
SIGPLAN Notices, 26(6), 165-176

Granlund, T. and Kenner, R. (July 1992). Eliminating branches using a super-optimizer and the GNU C compiler.
ACM S GPLAN Notices, 27, 341-352

Griswold, R. E. and Griswold, M. T. (1983). The Icon Programming Language. Prentice Hall

Griswold, R. E. and Griswold, M. T. (1986). The Implementation of the Icon Programming Language. Princeton
University Press

Grune, D. and Jacobs, C. J. H. (1990). Parsing Techniques: a Practical Guide. Ellis Horwood

Hall, M. W., Anderson, J. M., Amarasinghe, S. P., Murphy, B. R., Liao, S.-W., Bugnion, E., and Lam, M. S. (Dec.
1996). Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12), 84-89

Hanson, D. R. (Dec. 1985). Compact recursive-descent parsing of expressions. Software — Practice and
Experience, 15(12), 1205-1212

References 755

Hartmann, A. C. (1977). A Concurrent-Pascal compiler for minicomputers. Springer-Verlag

Hastings, R. and Joyce, B. (1992). Purify — Fast detection of memory leaks and access errors. In Winter *92
USENIX Conference (Eric Allman, ed.), pp. 125-136. USENIX Association

Hemerik, C. and Katoen, J. P. (Jan. 1990). Bottom-up tree acceptors. Science of Computer Programming, 13,
51-72

Hennessy, J. L. and Mendelsohn, N. (Sept. 1982). Compilation of the Pascal case statement. Software — Practice
and Experience, 12(9), 879-882

Holmes, J. (1995). Object-Oriented Compiler Construction. Prentice-Hall International

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and Computation.
Addison-Wedley

Hummel, J., Hendren, L. J, and Nicolau, A. (Aug. 1994). A framework for data dependence testing in the
presence of pointers. In 1994 International Conference on Parallel Processing (Val. I1) (K.C. Tai, ed.), pp.
216-224. CRC Press

Hwu, W.-M. and Chang, P. P. (July 1989). Inline function expansion for compiling C programs. ACM SIGPLAN
Notices, 24(7), 246-257

Jazayeri, M. and Pozefsky, D. (Oct. 1981). Space efficient storage management for attribute grammars. ACM
Trans. Programming Languages and Systems, 3(4), 388-404

Johnson, W. L., Porter, J. S, Ackley, S. |., and Ross, D. T. (Dec. 1968). Automatic generation of efficient lexical
processors using finite state techniques. Commun. ACM, 11(12), 805-813

Johnsson, T. (June 1984). Efficient compilation of lazy evaluation. ACM SIGPLAN Notices, 19(6), 58-69

Johnsson, T. (Sept. 1987). Attribute grammars as a functional programming paradigm. In 3rd Functional
Programming Languages and Computer Architecture Conference (G. Kahn, ed.), pp. 154-173. Springer-
Verlag

Jones, N. D., Gomard, C. K., and Sestoft, P. (April 1993). Partial Evaluation and Program Generation. Prentice
Hall

Jones, R. and Lins, R. (1996). Garbage Collection — Algorithms for Automatic Dynamic Memory Management.
John Wiley

Jourdan, M. (June 1984). Strongly non-circular attribute grammars and their recursive evaluation. ACM SIGPLAN
Notices, 19(6), 81-93

Jul, E., Levy, H., Hutchinson, N., and Black, A. (Feb. 1988). Fine-grained mobility in the Emerald system. ACM
Trans. Computer Systems, 6(1), 109-133

Kannan, S. and Proebsting, T. A. (Feb. 1994). Correction to ‘Producing good code for the case statement’.
Software — Practice and Experience, 24(2), 233

Karp, A. H. (May 1987). Programming for parallelism. IEEE Computer, 20(5), 43-57

Kastens, U. (1987). Lifetime analysis for attributes. Acta Informatica, 24, 633-652

Kastens, U., Hutt, B., and Zimmermann, E. (1982). GAG: A Practical Compiler Generator. Springer-Verlag

Katayama, T. (July 1984). Trandlation of attribute grammars into procedures. ACM Trans. Programming
Languages and Systems, 6(3), 345-369

Keleher, P., Cox, A. L., Dwarkadas, S., and Zwaenepoel, W. (Jan. 1994). TreadMarks. Distributed shared
memory on standard workstations and operating systems. In Winter 94 USENIX Conference (Jeffrey Mogul,
ed.), pp. 115-132. USENIX Association

Kennedy, K. (1981). A survey of data flow analysis techniques. In Program Flow Analysis (Steven S. Muchnick
and Neil D. Jones, ed.), pp. 5-54. Prentice Hall

King, J. (July 1976). Symbolic execution and program testing. Commun. ACM, 19(7), 385-394

Klint, P. (Sept. 1981). Interpretation techniques. Software — Practice and Experience, 11(9), 963-973

Knuth, D. E. (1965). On the trandation of languages from left to right. Inform. Controal, 8, 607-639

Knuth, D. E. (1968). Semantics of context-free languages. Math. Syst. Theory, 2(2), 127-145

Knuth, D. E. (1971). Semantics of context-free languages — correction. Math. Syst. Theory, 5(1), 95-96

Knuth, D. E. (1973). The Art of Computer Programming — Vol 1: Fundamental Algorithms. 2nd Edn. Addison-
Wesley

Knuth, D. E. and Stevenson, F. R. (1973). Optima measurement points for program frequency counts. BIT, 13,
313-322

Koskimies, K. (June 1991). Object-orientation in attribute grammars. In Attribute Grammars, Applications and
Systems (H. Alblas & B. Méelichar, ed.), pp. 297-329. Springer-Verlag

756 References

Kowaltowski, T. (1981). Parameter passing mechanisms and run-time data structures. Software — Practice and
Experience, 11(7), 757-765

Kristensen, A. (1998). Template resolution in XML/HTML. Computer Networks and ISDN Systems, 30(1-7),
239-249

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction to Parallel Computing — Design and
Analysis of Algorithms. Benjamin/Cummings

Kursawe, P. (1987). How to invent a Prolog machine. New Generation Computing, 5, 97-114

LalLonde, W. R,, Leg, E. S, and Horning, J. J. (1971). An LALR(K) parser generator. In IFIP Congress 71 (C.V.
Freiman, ed.), pp. 153-157. North-Holland

Landin, P. J. (April 1964). The mechanical evaluation of expressions. Computer J., 6(4), 308-320

Lemkin, P. F. (Oct. 1988). PSAIL: a portable SAIL to C compiler — description and tutorial. ACM SIGPLAN
Notices, 23(10), 149-171

Levine, J. R. (1999). Linkers and Loaders. Morgan-Kaufmann

Levine, J. R., Mason, T., and Brown, D. (1992). Lex and Yacc. 2nd Edn. O’ Reilly

Lewis, H. R. and Papadimitriou, C. H. (1998). Elements of the Theory of Computation. Prentice Hall

Lewisll, P. M. and Stearns, R. E. (1968). Syntax-directed transduction. J. ACM, 15(3), 465-488

Li, K. and Hudak, P. (Nov. 1989). Memory coherence in shared virtual memory systems. ACM Trans. Computer
Systems, 7(4), 321-359

Linz, P. (1997). An Introduction to Formal Languages and Automata. 2nd Edn. Jones and Bartlett

Louden, K. C. (1997). Compiler Construction — Principles and Practice. PWS Publishing

Loveman, D. B. (Feb. 1993). High performance Fortran. |[EEE Parallel and Distributed Technology, 1(1), 25-42

Maassen, J., Van Nieuwpoort, R., Veldema, R., Bal, H. E., and Plaat, A. (Aug. 1999). An efficient implementation
of Java s remote method invocation. ACM SIGPLAN Notices, 34(8), 173-182

Martelli, A. and Montanari, U. (April 1982). An efficient unification algorithm. ACM Trans. Programming
Languages and Systems, 4(2), 258-282

Massalin, H. (Oct. 1987). Superoptimizer — A look at the smallest program. ACM S GPLAN Notices, 22(10),
122-126

McCarthy, J. (April 1960). Recursive functions of symbolic expressions and their computation by machine.
Commun. ACM, 3(4), 184-195

McKenzie, B. J.,, Harries, R., and Bell, T. C. (Feb. 1990). Selecting a hashing algorithm. Software — Practice and
Experience, 20(2), 209-224

McKenzie, B. J, Yeatman, C., and DeVere, L. (July 1995). Error repair in shift-reduce parsers. ACM Trans.
Programming Languages and Systems, 17(4), 672-689

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997). The Definition of Sandard ML. revised Edn. MIT
Press

Morel, E. (1984). Data flow analysis and global optimization. In Methods and Tools for Compiler Construction
(B. Lorho, ed.), pp. 289-315. Cambridge University Press

Morgan, R. (1998). Building an Optimizing Compiler. Digital Press/Butterworth-Heinemann

Muchnick, S. (1997). Advanced Compiler Design and Implementation. Morgan Kaufmann

Muchnick, S. S. and Jones, N. D. (1981). Program Flow Analysis. Prentice Hall

Naur, P. (1965). Checking of operand typesin ALGOL compilers. BIT, 5, 151-163

Nguyen, T.-T. and Raschner, E. W. (May 1982). Indirect threaded code used to emulate a virtual machine. ACM
SIGPLAN Notices, 17(5), 80-89

Nitzberg, B. and Lo, V. (Aug. 1991). Distributed shared memory — A survey of issues and algorithms. |IEEE
Computer, 24(8), 52-60

Noonan, R. E. (1985). An agorithm for generating abstract syntax trees. Computer Languages, 10(3/4), 225-236

Nuutila, E. (Nov. 1994). An efficient transitive closure agorithm for cyclic digraphs. Information Processing
Letters, 52(4), 207-213

Op den Akker, R. and Sluiman, E. (June 1991). Storage allocation for attribute evaluators using stacks and queues.
In Attribute Grammars, Applications and Systems (H. Alblas & B. Melichar, ed.), pp. 140-150. Springer-
Verlag

Pagan, F. G. (June 1988). Converting interpreters into compilers. Software — Practice and Experience, 18(6),
509-527

Pagan, F. G. (1991). Partial Computation and the Construction of Language Processors. Prentice Hall

References 757

Pager, D. (1977). The lane-tracing algorithm for constructing LR(k) parsers and ways of enhancing its efficiency.
Inform. Sci., 12, 19-42

Paige, R. and Koenig, S. (July 1982). Finite differencing of computable expressions. ACM Trans. Programming
Languages and Systems, 4(3), 402-452

Parr, T. J. and Quong, R. W. (1995). ANTLR: A predicated-LL(k) parser generator. Software — Practice and
Experience, 25(7), 789-810

Parsons, T. W. (1992). Introduction to Compiler Construction. Computer Science Press

Paulson, L. C. (1996). ML for the Working Programmer. 2nd Edn. Cambridge University Press

Pemberton, S. (1980). Comments on an error-recovery scheme by Hartmann. Software — Practice and
Experience, 10(3), 231-240

Pettersson, M. (Oct. 1992). A term pattern-match compiler inspired by finite automata theory. In Compiler
Construction, 4th International Conference, CC'92 (U. Kastens and P. Pfahler, ed.), pp. 258-270. Springer-
Verlag

Peyton Jones, S. L. (1987). The Implementation of Functional Programming Languages. Prentice Hall

Peyton Jones, S. and Hughes, J. (Feb. 1999). Haskell 98: A non-strict, purely functional language. Technical
Report http://www.haskell.org/onlinereport, Internet

Peyton Jones, S. L. and Lester, D. R. (1992). Implementing Functional Languages. Prentice Hall

Plaisted, D. A. (1984). The occur-check problem in Prolog. New Generation Computing, 2, 309-322

Poonen, G. (Aug. 1977). Error recovery for LR(K) parsers. In Information Processing 77 (Bruce Gilchrist, ed.),
pp. 529-533. North Holland

Proebsting, T. A. (May 1995). BURS automata generation. ACM Trans. Programming Languages and Systems,
17(3), 461-486

Purdom Jr., P. (1970). A transitive closure algorithm. BIT, 10, 76-94

Quinn, M. J. (1994). Parallel Computing — Theory and Practice. McGraw-Hill

Riihd, K.-J. and Saarinen, M. (1982). Testing attribute grammars for circularity. Acta Informatica, 17, 185-192

Ramalingam, G. and Srinivasan, H. (1997). A member lookup algorithm for C++. ACM SIGPLAN Notices, 32(5),
18-30

Reps, T. (March 1998). Maximal-munch tokenization in linear time. ACM Trans. Programming Languages and
Systems, 20(2), 259-273

Révész, G. E. (1985). Introduction to Formal Languages. McGraw-Hill

Richter, H. (July 1985). Noncorrecting syntax error recovery. ACM Trans. Programming Languages and Systems,
7(3), 478-489

Ritter, T. and Walker, G. (Sept. 1980). Varieties of threaded code for language implementation. BYTE, 5(9),
206-227

Robinson, J. A (Jan. 1965). A machine-oriented logic based on the resolution principle. J. ACM, 12(1), 23-41

Robinson, J. A. (1971). Computational logic: The unification computation. Mach. Intell., 6, 63-72

Rohrich, J. (Feb. 1980). Methods for the automatic construction of error correcting parsers. Acta Informatica,
13(2), 115-139

Sale, A. (Sept. 1981). The implementation of case statements in Pascal. Software — Practice and Experience,
11(9), 929-942

Saloman, D. (1992). Assemblers and Loaders. Ellis Horwood

Samelson, K. and Bauer, F. L. (Feb. 1960). Sequential formulatranslation. Commun. ACM, 3(2), 76-83

Sankaran, N. (Sept. 1994). A bibliography on garbage collection and related topics. ACM SIGPLAN Notices,
29(9), 149-158

Sassa, M. and Goto, E. (1976). A hashing method for fast set operations. Information Processing Letters, 5(2),
31-34

Schnorr, C. P. (May 1978). An algorithm for transitive closure with linear expected time. SAM J. Comput., 7(2),
127-133

Schorr, H. and Waite, W. M. (Aug. 1967). An efficient machine-independent procedure for garbage collection in
various list structures. Commun. ACM, 10(8), 501-506

Sedgewick, R. (1988). Algorithms. Addison-Wesley

Sethi, R. and Ullman, J. D. (Oct. 1970). The generation of optimal code for arithmetic expressions. J. ACM, 17(4),
715-728

Sheridan, P. B. (Feb. 1959). The arithmetic translator-compiler of the IBM FORTRAN automatic coding system.
Commun. ACM, 2(2), 9-21

758 References

Sikléssy, L. (June 1972). Fast and read-only algorithms for traversing trees without an auxiliary stack. Information
Processing Letters, 1(4), 149-152

Sippu, S. and Soisalon-Soininen, E. (1988/1990). Parsing Theory, Voal. |: Languages and Parsing; Vol. I1: LL(K)
and LR(K) Parsing. Springer-Verlag

Skillicorn, D. B. and Talia, D. (June 1998). Models and languages for paralel computation. ACM Computing
Surveys, 30(2), 123-169

Stirling, C. P. (March 1985). Follow set error recovery. Software — Practice and Experience, 15(3), 239-257

Stumm, M. and Zhou, S. (May 1990). Algorithms implementing distributed shared memory. |IEEE Computer,
23(5), 54-64

Sudkamp, T. A. (1997). Languages and Machines — An Introduction to the Theory of Computer Science. 2nd Edn.
Addison-Wedley

Systo, M. M. and Dzikiewicz, J. (1975). Computational experiences with some transitive closure algorithms.
Computing, 15, 33-39

Tanenbaum, A. S. (1995). Distributed Operating Systems. Prentice Hall

Tanenbaum, A. S, Van Staveren, H., Keizer, E. G., and Stevenson, J. W. (Sept. 1983). A practical toolkit for
making portable compilers. Commun. ACM, 26(9), 654-660

Tanenbaum, A. S, Van Staveren, H., and Stevenson, J. W. (Jan. 1982). Using peephole optimization on
intermediate code. ACM Trans. Programming Languages and Systems, 4(1), 21-36

Tarditi, D. R, Lee, P., and Acharya, A. (June 1992). No assembly required: compiling Standard ML to C. ACM
Letters on Programming Languages and Systems, 1(2), 161-177

Tarjan, R. E. (April 1975). Efficiency of agood but not linear set merging algorithm. J. ACM, 22(2), 215-225

Templ, J. (April 1993). A systematic approach to multiple inheritance. ACM SIGPLAN Notices, 28(4), 61-66

Terry, P. D. (1997). Compilers and Compiler Generators — An Introduction Using C++. International Thomson

Thompson, K. (June 1968). Regular expression search algorithm. Commun. ACM, 11(6), 419-422

Thompson, S. (1999). Haskell: The Craft of Functional Programming. 2nd Edn. Addison-Wesley

Turner, D. A. (1979). A new implementation technique for applicative languages. Software — Practice and
Experience, 9, 31-49

Uhl, J. S. and Horspool, R. N. (1994). Flow grammars — a flow analysis methodology. In Compiler Construction:
5th International Conference, CC ' 94 (Peter A. Fritzson, ed.), pp. 203-217. Springer-Verlag

Ungar, D. M. (May 1984). Generation scavenging: A non-disruptive high performance storage reclamation
agorithm. ACM SIGPLAN Notices, 19(5), 157-167

Van Roy, P. (1994). 1983-1993: The wonder years of sequential Prolog implementation. J. Logic Programming,
19-20, 385-441

Van Wijngaarden, A., Mailloux, B. J,, Peck, J. E. L., Koster, C. H. A., Sintzoff, M., Lindsey, C. H., Meertens, L.
G. L. T., and Fisker, R. G. (1975). Revised report on the algorithmic language Algol 68. Acta Informatica, 5,
1-236

Verbrugge, C., Co, P., and Hendren, L. (1996). Generalized constant propagation — a study in C. In Compiler
Construction: 6th International Conference, CC’ 96 (Tibor Gyiméthy, ed.), pp. 74-90. Springer-Verlag

Vitek, J. and Horspool, R. N. (1996). Compact dispatch tables for dynamically typed object-oriented languages. In
Compiler Construction: 6th International Conference, CC' 96 (Tibor Gyiméthy, ed.), pp. 309-325. Springer-
Verlag

Waddle, V. E. (Jan. 1990). Production trees. a compact representation of parsed programs. ACM Trans.
Programming Languages and Systems, 12(1), 61-83

Warren, D. H. D. (Oct. 1983). An Abstract Prolog Instruction Set. Technical Report Technical Note 309, Artificial
Intelligence Center, SRI

Warshall, S. (1962). A theorem on Boolean matrices. J. ACM, 9, 11-12

Wegbreit, B. (Sept. 1975). Property extraction in well-founded property sets. IEEE Trans. Software Engineering,
SE-1(3), 270-285

Wendt, A. L. (June 1990). Fast code generation using automatically generated decision trees. ACM SIGPLAN
Notices, 25(6), 9-15

Wentworth, E. P. (July 1990). Pitfalls of conservative garbage collection. Software — Practice and Experience,
20(7), 719-727

Wichmann, B. A. (May-June 1977). How to call procedures, or second thoughts on Ackermann’s function.
Software — Practice and Experience, 7(3), 317-329

References 759

Wilhelm, R. and Maurer, D. (1995). Compiler Design. Addison-Wesley

Wilson, G. V. (1995). Practical Parallel Programming. MIT Press

Wilson, G. V. and Lu, P. (1996). Parallel Programming Using C++. MIT Press

Wolfe, M. J. (1996). High Performance Compilers for Parallel Computing. Addison-Wesley

Yershov, A. P. (1971). The Alpha Automatic Programming System. Academic Press

Yuval, G. (July-Aug. 1977). The utility of the CDC 6000 registers. Software — Practice and Experience, 7(4),
535-536

Index

2-pass compiler 26
2-scan compiler 26

aposteriori type 455

apriori type 455

ABC 46

abstract class 473, 701, 703

abstract datatype 471-472

abstract syntax tree 9, 22, 52, 55, 194

acceptable partitioning 222, 223-224

acceptable-set method 138-139

accumulating arguments 585, 595

acquiring alock 660, 669-670, 674, 695, 750

action routine 616

ACTION table 160, 170, 191

activation record 32, 412, 462, 482

active node 285-286

activeroutine 32, 485, 497, 714

active-node pointer 285-287, 297

actual parameter in Linda 664

Ada 447, 696

address descriptor 319

address space 29, 376, 657, 659, 662, 668, 675

administration part 483-484, 514, 522

aggregate node allocation 588

Algol 68 457, 463-464, 488, 496, 622

Algol 68 format 187

alignment requirements 379, 399, 435, 465, 467,
533

dternative 37, 113-114, 702

ambiguous grammar 38, 111, 172, 192, 457, 710

amortized cost 397, 560

analysis-synthesis paradigm 6

760

ancestor routine 485, 490

AND/OR form 701, 708

annotated abstract syntax tree 9-10, 54, 279

annotation 9, 96, 194

anonymous type declaration 449

anti-dependence 687

ANTLR 132

application spine 561, 573, 746

applicative-order reduction 566, 594, 744

applied occurrence 199, 380, 440, 441

arithmetic sequence construct 541

arithmetic simplification 367, 370, 586

arity 546, 566, 587, 610, 639

array descriptor 469

array type 450, 467

array without array 534, 740

assembly code 374, 379-380, 583, 667

asserta() 630

assertz() 630-631

assignment 248, 277, 321, 416, 458, 464, 532

assignment under a pointer 334, 688

associative addressing 664

AST 9

asynchronous message passing 662-663, 692

atomic action 664

Attach clauses instruction 603, 746

attribute 9, 96, 135, 234, 547

attribute evaluation rule 196-197, 211, 223, 227,
274

attribute evaluator 196, 202, 204, 231, 273

attribute grammar 7, 195, 547

automatic paralelization 684, 695

automatic programming 33

auxiliary register 309
available ladder sequence 328

back-end 3, 6, 11, 32

backpatch list 263, 380

backpatching 263, 380

backtracking 77, 117, 596, 607, 654

Backus Normal Form 37

Backus—Naur Form 37

backward data-flow 262, 277

bad pointer 462

bag 399

base address 467-468

basic block 254, 320, 322, 373

basicitem 72-73, 80

basic operand 351

basic type 450, 460, 543, 582

BC(k,m) parsing 152

binary relation 598

binding alogical variable 596, 654

bison 178

bitset 470

block 397, 399

blocked thread 668-670, 695-696

BNF 37, 59, 158, 202

body 599

Boolean control expression 502

Boolean type 461

bootstrapping 2, 709

bottom-up parser 114, 150, 178, 191, 230, 234-235,
716

bottom-up pattern matching 341, 342-343, 346

bottom-up rewriting system 341

bottom-up tree rewriting 320, 357, 365, 372

bounded stack 436

boxing analysis 582

broad compiler 26-27, 96, 244, 320

bucket 100, 102

BURS 337, 341, 349, 357,494

busy waiting 669, 695

C 25,117, 375, 442, 549, 558, 597
C preprocessor 107

caching behavior 688

call by reference 514

call by result 514

cal by value 514

call by value-result 514

callee 29, 260, 513, 534, 576, 583
callee-saves scheme 515, 534
caller 260, 518, 576, 583
caller-saves scheme 515, 534
caling graph 41, 43

calling sequence 513, 515, 517, 634

Index 761

candidate set 261

case label 506, 536

case statement 505-507, 536

cast 457

cell 411, 420

character move 73

child 112

child routine 485, 495

chunk 397, 399

class 471

class composition 700

class extension 700, 708

clause 596, 600

cloning 368, 370-371

closed hashing with chaining 100

closure 439, 498, 589

closure algorithm 42, 498

closure specification 43, 51

CM-5 657

coalesce 400, 403, 408, 737

code address of aroutine 483, 485, 491, 496, 499,
587

code generated for aquery 621

code generation 19, 290, 295, 297, 302, 320, 337,
374, 501, 523, 525, 568

code generation module 24

code hoisting 277

codein-lining 24, 369-370, 395, 582, 623, 638, 745

code segment 375, 396, 736

code selection 293

code-generating scan 341

coercion 448, 455

collision 100, 103, 444

column-major order 468

comb algorithm 90

comment starter 68, 187

common subexpression 324-325, 334-335,
391-392

common subexpression elimination 310, 324-326,
549

communication daemon thread 672, 674

compaction 408, 421, 428, 437, 736

comp.compilers newsgroup 185

compilation by symbolic interpretation 318

compilation unit 31, 357, 450, 523

compiler 1

compiler compiler 8, 178

composition operator 58, 186

compound result type 517

concurrent execution 663, 675, 685

concurrent garbage collection 409, 435

condition code 286

condition synchronization 660

condition variable 660, 670

762 Index

conditional compilation 104

conditional text inclusion 104, 107
conservative garbage collection 414
conservative parallelization 687

constant folding 24, 49, 55, 367, 395, 549
constant propagation 250, 253, 369, 395, 638
context condition 39, 195-196, 199, 711
context handling 9, 19, 194, 244, 440
context handling module 23, 54, 97, 279, 710
context (in coercions) 455

context switch 667-668, 670

context-free grammar 34, 39, 60, 133, 194, 719
context-handling module 195

continuation 482-483, 488, 618, 722
continuation information 483-484, 501
continuation of astack 139, 140, 175

control flow graph 239, 245, 253, 266, 321
conversion 457

core of an LR(1) state 170-171

coroutine 29, 33, 414, 482, 484, 485, 500
coroutine call 29

ctype package 68

currying 489, 497, 540, 546, 551, 560, 592-593
cut operator 597, 601, 628, 654

dag 321

dangerous compiler 29

dangling else 172-173, 175, 192

dangling pointer 407, 463-464

data dependency 686

data parallelism 658, 665-666, 685

data segment 376, 396, 736

data-flow equations 253, 262, 265, 267, 277
data-flow paradigm 195

data-parallel programming 658, 665, 688
dead code elimination 368, 395, 638

dead variable 321

debugging of garbage collectors 415
declaration of amethod 473

defining occurrence 199, 380, 440, 441
definition of amethod 473

degree of anode 360

dependency graph 200, 274, 321, 326-328
dependent inheritance 478

dependent on 200, 334

dereferencing 407, 461-462, 607, 609, 625
dereferencing afield selection 461
derivable from 40

derivation 36

deserialization 672

desugaring 553

deterministic 110, 117, 134, 172, 337
direct left-recursion 130

directed acyclic graph 321

directly derivable from 39

discriminated union 467

dispatch table 475-476, 478-479, 481, 512
display goal 601

distributed system 656, 695

distributing an array 690

dope vector 526

dotted item 71-72, 110, 153, 373

dotted tree 342

dvi format 8

dynamic allocation part 515, 516
dynamic array 470, 514

dynamic attribute evaluation 204, 210
dynamic binding 474, 480, 708

dynamic conflict resolver 132, 143
dynamic cycle detection 211

dynamic link 483, 501, 514

dynamic programming 337, 347, 350, 357

€ closure 77, 79, 154, 166

€ move 73, 154, 186

EBNF 38, 50, 59

elaborate a statement 284
element of an array 467

element selection 468

empty list 541

empty state 84, 88, 354
enumeration type 461, 467, 475
equation 541

error correction 116, 136, 144, 175
error detection 115-116, 142, 190
error handling in lexical analyzers 93
error state 158

error-recovering non-terminal 176
escape character 59

Escher, M.C. 301

Ethernet 657

evaluate an expression 284

event queue 404

exception handler 415, 522, 537
exclusive or 436

executable code output module 24
Extended BNF 38

extended subset 30, 50

extensible array 98, 287, 398, 404, 435
external entry point 377

external name 377

external reference 377

external symbol 377

external symbol table 377
extra-logical predicate 630

fact 596, 598
failureinthe WAM 625

field selection 466

fileinclusion 104

filter 557

final method 479

fine-grained parallelism 685
finite-state automaton 80
finite-state tree automaton 347
FIRST set 121

first-class citizens, functions as 545
FIRST/FIRST conflict 127
first-fit 90

FIRST/FOLLOW conflict 127
flex 187

flow dependence 687

FOLLOW set 123

follow set 138

FOLLOW-s&t error recovery 139
follow-set error recovery 138

fork statement 659

formal attribute 195

formal parameter in Linda 664
for-statement 508

forward declaration 441, 473
forward reference 450, 594
forwarding address 676

FP 482, 515, 517-518

frame 412, 482, 489, 585

frame pointer 482, 489, 493, 559
free bit 399, 420-421

freelist 400, 416

from-space 408, 425

front-end 3, 52, 539

FSA 50, 80, 347, 373

full symbolic interpretation 247, 251, 277, 724
full-LL(1) 124, 190

fully parenthesized expression 12, 701
function result register 517
functional core 549, 558-559, 568, 575, 594
functor 607, 639

garbage collection 262, 398, 407, 545, 598
garbage set 407

gce 297, 333

genera closure algorithm 44

general name space 442

generational garbage collection 409, 429
generator 557

generic pointer type 462

generic unit 109, 525

global routine 485

GNU C compiler 297

goal 599

goal list stack 601

goto statement 251, 368, 502

Index 763

GOTO table 158
grammar 34, 35
grammar symbol 35, 195
graph coloring 92

graph reducer 560

handle 152

hash function 100, 682

hash table 100, 188, 325, 443, 470, 532, 626, 682
Haskell 540

head 599

header filein C 22

heap 397, 462, 484, 495, 498, 560
heap sort 404

heroic compiler 659

heuristic graph coloring 360
hidden left-recursion 130, 149
High Performance Fortran 693
higher-order function 545

HPF 693

Huffman compression 86

IC 23

Icon 29, 33, 389, 488, 496, 615, 622
if-statement 368, 505

implementation language 1, 100, 399, 451
implicit parallelism 659

implicit receipt 662

imported scope 448

i n operationin Linda 664, 679

in situ replacement 595, 745

inactive routine 485

incremental garbage collection 408, 436
independent inheritance 478

indexing 468

indirect left-recursion 130

indirect routine call 261, 471, 489
indivisible operation 660, 664—665, 669, 695, 697
inference rule 42

inference technique 601

inheritance 472

inherited attribute 196

initial state 80, 343, 351

in-lining 368

input tree 339

instantiation through dope vectors 526
instantiation through expansion 526
instruction ordering 293
instruction-collecting scan 341
instruction-selecting scan 341
instrumenting a program 317
interface 480

interference graph 92, 359
intermediate code 9, 23

764 Index

intermediate code generation module 23
intermediate code optimization module 24
intermediate code tree 279

interpreter 3, 281, 295, 560, 603, 630, 699
interprocedural data-flow analysis 260, 688
invalidate replicated copies 677
|S-dependency 212

IS-SI graph 212, 274

item 71-72, 110, 153, 373

iterative interpreter 285, 297, 389, 603
iterator 485, 500

JavaRMI 673

join operator 255

jump buffer 490

jump table 506

jumping out of aroutine 488, 496

kind 449

ladder sequence 328

LALR(1) automaton 172

LALR(1) parsing 152, 170, 176, 191, 234
lambdal lifting 499, 559, 594

language generated by agrammar 40
last-def analysis 253

late evaluation 224, 228, 328

latency 671

lattice 250, 277

L-attributed grammar 230, 269, 275

lazy Boolean operator 117-118, 503

lazy evaluation 328, 547, 560, 564, 566, 575
lcc 389

least fixed point 43

|eft-associative 153, 540, 716
left-factoring 129

|eft-hand side 35

leftmost derivation 36

leftmost innermost redex 566

|eftmost outermost redex 566
|eft-recursion removal 129

left-recursive 38, 120, 127, 144
Lempel-Ziv compression 86
let-expression 543, 572, 594

lex 83, 94, 187

lexical analysis module 22

lexical analyzer 10, 61, 68, 83, 93-94, 541
lexical identification phase 98

lexical pointer 483-484, 491, 493, 514, 559
library 25, 281, 297, 376, 658, 672
lifetime 463

Linda 664

Lindakernel 678

Linda preprocessor 678

Linda Tuple Space 678

linear-time 31, 86, 111, 168, 224, 277, 406, 726
linked list 398, 403

linker 25, 376, 381, 389

lint 247

list 541

list comprehension 542, 557

list procedure 616, 654

live analysis 262-263, 265, 319, 333, 358
livevariable 262

LL(1) conflict 127-128, 715

LL(1) grammar 123, 127, 142

LL (1) parser generation 123

LL(1) parsing 121-122, 139, 715
LL(2) grammar 132, 190

LLgen 132, 142, 179, 232, 237, 715
LLgen directive 144

loader 376, 389

local attribute 203

local variable area 515

location 458

lock variable 660, 669

I'ongj mp() 490

look-ahead set 165-166, 190

loop interchange 689

loop restructuring transformation 688
loop unrolling 511

loop-carried dependence 687
loop-exit list 248

LR automaton 159

LRitem 153, 191

LR reduceitem 154

LR shiftitem 154

LR(0) grammar 162

LR(0) parsing 152-153, 191
LR(1) parsing 152, 165, 191, 217
Ivalue 458, 462, 470, 514

machine code generation 374
machine code generation module 24
macro application 103

macro call 103

macro definition 103, 444
makefile 32, 296

mark and scan 408, 420

mark and sweep 420

marked bit 420

marker rule 131

marking 420

marking phase 420

marshaling 672

Match instruction 603, 609, 746
match move 134

matching agoal 599

matching in regular expressions 58
matrix 467

maximal basic block 320

meaning of ‘to compile’ 3

meet operator 255

member 35

memoization 285, 348, 350, 389, 436
memory dump 520

memory fragmentation 408, 419, 427
memory management unit 462
message aggregation 692

message buffer 672

message combining 692

message handler 662

message passing 658, 671

message selection 674

method 663

method invocation 471, 479, 512, 673
method overriding 472

Miranda 593

module 523

moduleinitialization 524

monitor 660, 669, 695

monitor lock 670

most recent binding 607, 613

MPI 658

multicomputer 657

multiple inheritance 476, 533
multiprocessor 657

multi-visit attribute evaluation 219, 230
mutua exclusion synchronization 660

name equivalence 454

name generation for modules 524

name list 98, 442

name space 442, 526, 532, 675

narrow compiler 26, 96, 232, 269, 302, 320-321,
444

nested routine 485, 558, 597, 618

newline 57, 185

non-correcting error recovery 116

non-cyclic attribute grammar 217, 275

non-deterministic 162, 362

nondeterministic-polynomial 90

non-local assignment 494

non-local goto 482, 488, 496, 518

non-local label 488, 491, 496

non-terminal symbol 35, 39

no-op instruction 379

normal-order reduction 566

NP-complete 89, 90, 293, 320, 360, 373

N-phase compiler 27

NPRD grammar 189

null sequence 367

Index 765

nullable non-terminal 38, 121-122, 190

object 471, 658

object constructor 471, 527, 702, 708
object destructor 471, 527

object identifier 675

object location 675

object migration 676

object replication 677
object-oriented compiler construction 699
object-oriented parsing 702

occur check 608

offset table 479

offsiderule 438, 541

OID 675

one-shot garbage collection 408
one-space copying 437

on-the-fly garbage collection 408
operation on an object 663
optimization 32, 64, 102, 403, 479, 511, 646, 648
ordered attribute evaluator 224
ordered attribute grammar 224

out operationinLinda 664

outer loop 686

outline code 46

output dependence 687

overloading 447

package 523

panic-mode error correction 139

parallel loop statement 665

parallel system 656

parameter area 514

parameter passing mechanism 514

parent class 472, 476, 481

parent routine 485

parse table 164

parsetree 9, 148

parser 36, 110, 702

parsing 9, 110, 540, 616

partial evaluation 297, 300, 390, 638, 744
partial parameterization 488, 499
partition (Tuple Space) 679, 683
partitioning (of attributes) 222

passing aroutine as a parameter 463, 487, 495, 617
pattern matching 543, 553, 593

pattern tree 337, 732

PDA 134

peephole optimization 333, 371

phase of acompiler 27

PL/I preprocessor 104-105, 107-108, 713
pointer chasing 677

pointer consistency 410

pointer layout 410

766 Index

pointer problems 334

pointer (re)subtyping 474

pointer reversal 422

pointer scope rules 463, 559, 738

pointer supertyping 474

pointer tagging 588

pointer type 461

pointer validity 410

polymorphic function application 551

polymorphic type 543

polymorphic type checking 551

polymorphism 474

polynomial time 90

pool of threads 674

port 662

portability 32

portability of acompiler 32

position-independent code 735

post-order visit 112

precedence 59, 174

precedence parsing 152

precomputation 66, 80, 120, 157, 191, 285, 346,
469, 475

prediction move 134

prediction rule 155

prediction stack 134

predictive parser 121

predictive recursive descent parser 17, 121

pre-order visit 112

prerequisite to 200, 210

privatization 689

process 658, 659

process abstraction 667

production rule 35, 39, 196, 547

production step 35, 40

production tree 35

program counter 351, 395, 482, 493, 662, 667

program data area 409, 496

program generator 7, 66, 301

program text input module 22, 56

program-counter relative addressing 395

Prolog 43, 296, 597, 628, 630, 654

property list 247

pseudo-register 329, 362

pure register machine 304

pure stack machine 303

push-down automaton 134, 159

PVM 658

qualifier 557
query 596, 599

reaching-definitions analysis 253
r ead operation in Linda 664

read/write mode 646

receive statement 662

reclamation 434

record type 465

recursive descent parser 15, 117
recursive interpreter 281

redex 561

reduce item 72, 186, 733

reduce move 160

reduce-reduce conflict 162
reducible expression 561

reduction engine 566

reduction (graph) 561

reduction (in parsing) 152
reduction stack 159

reference counting 407, 415
referential transparency 406, 544
refinement 482

register alocation 293, 316, 332-333, 357
register alocation by graph coloring 320, 357
register and variable descriptor 318
register descriptor 319

register interference graph 359
register spilling technique 314
regi st er storageclass 336
register tracking 320, 333
register-memory machine 327
regular description 56, 60

regular expression 34, 56, 58, 237, 342
regular grammar 34

regvar descriptor 318

relation 596, 598

releasing alock 660

relocation 380

relocation information 377
repeated inheritance 478

repeated variables 593

repetition operator 58, 72, 124, 142
replacement pattern 371

replicated Tuple Space 683

rest of program, grammar for 116
resume statement 485

resuming aroutine 483, 485
retargetability 32

return information 483

return list 247

returning aroutine as avalue 482, 487, 495, 559
right-associative 117, 192, 551, 593
right-hand side 35

right-recursion 38, 191

root set 409, 496

routine call 487, 512-513, 616
routine definition 487, 616

routine denotation 621

routine type 471

row displacement 87

row-major order 468

rule 596, 599

runnable thread 668

running routine 32, 439, 482, 485

running thread 668

run-time error 519

run-time system 25, 281, 396, 499, 545, 560, 659,
667

rvalue 458, 462, 470, 514

safe pointer 464

S-attributed grammar 230, 235, 275-276
scalar expansion 689

scan phase 420

scan pointer 425, 736

scheduler 668, 686

scheduler activation 667

Schorr and Waite algorithm 422, 436
scope in block-structured languages 442
scope of apointer 463, 491, 532, 559
screening 98

select statement 696

selection statement 505

self-descriptive chunk 411
self-organizing list 102

semantic checking 441

semantic representation 2

send statement 662

sentence 40

sentential form 35, 40

serialization 672

Set type 470

Sethi—UlIman numbering 311
setjnp() 491

setjmp/longjmp mechanism 490
shadow memory 287

shared variable 658, 659, 668

shiftitem 72, 166, 172, 186

shift move 159

shift-reduce conflict 162

shift-shift conflict 191

short-circuiting a function application 573, 586
Sl-dependency 212

signal handler 521, 537

signal operation 660, 670

signa statement 521

signature of a computer virus 83

simple symbolic interpretation 247, 277, 723
simulation on the stack 245

single inheritance 476

Single Program Multiple Data parallelism 685
SLR(1) parsing 152, 163, 190-191

Index

Smalltalk 33

sorted set 399

source language 1

SP 513

SP-2 657

sparse transition table 86
specialization 370

spineless tagless G-machine 592
spinning 669

SPMD parallelism 685

SR 674

stack 513

stack, direction of growth 513
stack of input buffers 105

stack pointer 513

stack representation 245

stack segment 376, 396

start symbol 35, 39, 136, 144, 199
state 80

state transition 80

static array 470

static attribute evaluation 204, 218
static binding 474

static cycle checking 211

static link 484, 491, 514

status indicator 282

storage representation in Linda 680
strength reduction 367

strict argument 565, 574, 576, 579, 594
strictness analysis 576, 594

string 39

strong-LL (1) parser 124

strongly LL(1) 124

strongly non-cyclic 217, 275
structural equivalence 455
structure type 465

subclass 472

subroutine 485

subset algorithm 81, 158, 346, 352
substitution in grammars 129
subtree 112

Succeed instruction 603, 605
suffix grammar 116, 188
supercompilation 363

suspend statement 485

suspended routine 439, 482, 485
switch statement 505

symbol 39

symbol table 98, 133, 188, 284, 442
symbolic interpretation 245
synchronization primitive 660
synchronous message passing 662
syntactic sugar 540, 553

syntax analysis 9, 57, 110, 440

767

768 Index

syntax analysis module 22 typed pointer 462
syntax tree 9, 110, 135, 230
synthesized attribute 196 UDP 671
unary relation 598
table compression 86 unbound variable 599, 612, 625
table lookup 68, 285, 347 undiscriminated union 467
tail call 582 unification 544, 596, 607, 609, 612, 634, 654—655
target code optimization module 24 uniform distribution in Linda 683
target language 1, 375, 523, 549 uniform self-identifying data representation 281
target register 309 Unify instruction 603, 609, 747
task 33, 656 union tag 467
task parallelism 665 union type 466
TCP/IP 671 unmarshaling 672
term 596 unrolling factor 511
termina 35 unwinding 566, 575, 589, 746
terminal production 40 update replicated copies 678
terminal symbol 35, 39 URL syntax 185
terminated routine 32, 462, 485 usage count 317, 362
test-and-set instruction 669 useless non-terminal 38
TeX 8 user space 667
thread 658, 662, 667
thread control block 667 vaidity span 463
thread preemption 668 value 458
threaded code 297 value of avariablein an assembler 379
threading (of an AST) 239, 247, 276, 287 variable descriptor 319
throughput 671 variable-length graph node 587
token 10, 35 vector 467
token description 61, 70, 77 vector apply node 588, 595
tokenize 10 very busy expression 277
top-down parser 113, 120, 142, 232 virtual method 473, 479
to-space 408, 425 visiting anode 112
totally-ordered group communication 678 visiting routine 220
traill 610, 634 vocabulary 39
transition diagram 82, 158, 161, 163 void type 460
transition function 80
transitive closure 42, 498 wait operation 660, 670
transitive closure algorithm 44 WAM 597, 623, 636, 638, 648, 653
translation 1 Warren Abstract Machine 597, 653
traversing anode 112 weight of a subtree 310-311, 313-314, 316, 365,
traversing atree 112 390
tree rewriting 290 weighted register allocation 310, 339, 349
triple 324, 326 while statement 276, 507, 509, 741
tuple matching 664 working stack 308, 412, 461, 483, 513, 515, 517
Tuple Space 658, 664, 678
Tuple Space server 678 yacc 176, 178, 234
two-scans assembly 380 yield statement 485
two-space copying 408, 420, 425, 437, 545
type 449 zeroth element 469, 533

type checking 449, 673

type declaration 449, 544, 551
type equivalence 454-455, 551
type extension 472

typetable 450, 552

type variable 544, 551

