More answers to exercises

This version contains more answers to exercises than shown in Appendix A of the book
Modern Compiler Design.

Answers for Chapter 1

11

12

16

Advantages. Assuming the language is still being designed, writing a major piece of software in it is an
excellent shake-down for the language design. Compiling the compiler may be a good way to debug the
compiler (but there is a problem here: how defensible is debugging by using not well debugged tools?) Any
improvement to the compiler benefits the compiler writers themselves, which gives them an incentive to
improve the compiler more.

Disadvantages. Bootstrapping problems. there is no compiler to compile the first version with. Any
changes to the language may necessitate many modifications to the compiler, as both the implementation
and the source language change. The compiler may inadvertently be tuned to constructions used specifi-
cally in the compiler.

The front-end (particularly the intermediate-code generator) may want to know if it should optimize for exe-
cution speed or code size. In most cases, speed is more important, but if the target machine is an embedded
processor in an inexpensive device, memory size may be more important.
The back-end may want to know about restrictions in the source language. For example, are pointers
alowed to point to any memory location or only to variables of a certain type? Consider

int x;

float *pf;

x = 12;

*pf = 0.0;

print(x);
If the language guarantees that pf cannot point to x, the last statement can be optimized topri nt (12) .

The code is basically that of the interpreter of Figure 1.19, except that rather than printing the value, it
creates anew Expr essi on node with the value.
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710 More answers to exercises

1.7 The error reporting module reports program errors to the user; it is therefore used as follows. Program text
input module: to report missing files. Lexical analysis module: to report lexical errors, for example unter-
minated strings. Syntax analysis module: to report syntax errors, for example unbalanced parentheses.
Context handling module: to report context errors, for example undeclared variables and type mismatches.
In principle, none of the other modules should need to report program errors to the user, since the annotated
AST as produced by the context handling module should be that of a correct program.

1.9 Indatastructures outside the while statement, as with any while statement.
111 SeeFigure Answers.1.

SET the flag There is a character _a_ buffered TO Fal se;

PROCEDURE Accept filtered character Ch from previous nodul e:
IF There is a character _a_ buffered = True:
/Il See if this is a second’
IF Ch ="a:
/1 W have 'aa’:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'b’ to next nodul e;
ELSE Ch /= "a’:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'a' to next nodul e;
Qut put character Ch to next nodul e;
ELSE IF Ch = "a’:
SET There is a character _a_ buffered TO True;
ELSE There is no character 'a buffered AND Ch /= "a’:
Qut put character Ch to next nodul e;

PROCEDURE Fl ush:
IF There is a character _a_ buffered:
SET There is a character _a_ buffered TO Fal se;
Qut put character 'a' to next nodul e;
Fl ush next nodul e;

a :

Figure Answers.1 Thefilter aa — b asapost-main module.

1.13 First a subset is created by taking away some features; the language is then extended by adding new
features. An example would be a C compiler which does not implement floating point numbers but does
have built-in infinite-length integer arithmetic. The sarcasm comes from the fact that everything is an
extended subset of everything else, which makes the term meaningless.

1.14 The grammar is now ambiguous; more in particular 8 - 3 - 5 will now parse bothas(8 - 3) - 5
and8 - (3 - 5),withobvioudly different semantics.

1.15 A possiblerewriteis:

paraneter_list -

in_out_option identifier next_identifier_sequence_option
in_out_option - "IN | "OUT" | ¢
next _identifier_sequence_option -

",’ identifier next_identifier_sequence_option | €

1.16 (a) left-recursive: B, C; right-recursive: S, C; nullable: S, A; useless: C. (b) Theset { x, €}. () Yes, x is
produced twice: S - A - B - xandS - B - x.
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For example, vari abl e_identifier, array_identifier, and procedure_identifier
may be different in the grammar but may still al be represented by an identifier in an actual program.

The empty representation cannot be recognized by the lexical analyzer, so the token will not reach the
parser, which islikely to make parsing (much) harder.

The grammatical production process stops when the sentential form consists of terminals only; to test this
situation, we have to be able to tell terminals and non-terminals apart. Actualy, thisis not entirely true: we
can scan the grammar, declare all symbols in left-hand sides as non-terminals and all other symbols as ter-
minals. So context condition (1) actually provides redundancy that can be checked.

Suppose there were two different smallest sets of information items, S, and S,. Then S, and S, must have
the same size (or one would not be the smallest) and each must contain at least one item the other does not
contain (or they would not be different). Call one such differing itemin S, X. Since both sets started with
the same initial items, X cannot be an initial item but must have been added by some application of an infer-
encerule. Thisrule clearly did not apply in S,, so there must be at least one other item Y that is present in
S, and absent from S,. By induction, al itemsin S, must differ from al itemsin S,, but thisisimpossible
since both started with the same initial items.

Answers for Chapter 2

25
27

29

211

(C) 0% (10* 1) * 0*

They both mean the same as a*. They are not fundamentally erroneous but may draw a warning from a
processor, since they are probably not what the programmer intended. Ambiguity is not a concept in lexical
analysis, so they are not ambiguous.

See Figure Answers.2.
voi d skip_l ayout _and_comment (voi d) {
while (is_layout(input_char)) {next_char();}
while (is_coment_starter(input_char)) {
ski p_coment () ;
while (is_layout(input_char)) {next_char();}
}
}
voi d ski p_comment (void) {
next _char();
while (!is_coment_stopper(input_char)) {
if (is_end_of _input(input_char)) return;
else if (is_comment_starter(input_char)) {
ski p_conmment () ;
}
el se next_char();
next _char();
}
Figure Answers.2 Skipping layout and nested comment.
Let him/her implement it and then feed an object file or jpeg picture as source file to the compiler; admire

the crash. Or, more charitably, explain this intention to the inventor.
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2.12 Theinput can match T, » R; over more than one Lengt h.
2.14 By enumerating all 256 possihilities: the pattern is not regular.

2.15 For example T—a(Re)"B. The* meansthat 1 or more Rs can be present. The dot after the R shows that
one R has already been recognized. Now there are two hypotheses: 1. This was the one and only R; the dot
leaves the (R) behind and moves in front of the B: T—a(R)" ef. 2. There is another R coming; the dot
moves to the position immediately in front of the R: T - a(eR)*B.

2.16 See Figure Answers.3.

T ae(R&R&..&R B O
TR, (R,&R.&..&R,B
ToaeR,(R,&R.&..&R, B

'T!u-Rn(Rl&RZ&...&Rn,l)B

Figure Answers.3 € move rule for the composition operator &.

2.17 Each round adds at least one dotted item to Cl osur e set and there is only a finite number of dotted
items.

2.18 There are 6 itemsthat have the dot before a basic pattern or at the end:
integral _nunber - (e [0-9])+

integral _nunber - ([0-9])+ e <<<< recogni zed
fixed_point_nunber - (e [0-9])* .’ ([0-9])+
fixed_poi nt_nunber - ([0-9])* e '.’ ([0-9])+
fixed_point_nunber - ([0-9])* ".’ (e [0-9])+
fixed_point_nunmber - ([0-9])* "." ([0-9])+ o <<<< recognized

and so there are 2°=64 subsets of 6 items.

2.20 See Figure Answers.4. Unfortunately, it appears that thisis not in any way better than marking by charac-
ter; on the contrary, the state array is probably larger.

0 (1, 0) - (2, 0)

1 (1, 1) - (2, 1)

2 (3, 2 - -

3 (3, 3 -
(1, 0) (1, 1) (2, 00 (2, 1) (3, 2) (3, 3) -

Figure Answers.4 Fitting the strips with entries marked by state.

2.22 See Figure Answers.5. We first copy strings and characters; this avoids recognizing the St ar t Corment
inside them. Next we break up the string into safe chunks and keep track of where we are in a start condi-
tion <Conment >. Comments can contain * but not */ ; so we consume the * s one by one, and then match
thefinal */ . Thisresetsthe start conditionto | NI Tl AL.

2.23 Close cooperation between lexical and syntax analyzer isrequired. Asakludge, preliminary skipping of the
dynamic expression based on counting nested parentheses could be considered. Error recovery is a night-
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ust ar t Comment

Layout ([ \t])

AnyQuot ed (\\.)

St ri ngChar ([""\n\\]]| {AnyQuot ed})

Char Char ([77\nm\\]] {AnyQuot ed})

St art Conment ("r*")

EndComent ("*rm)

Saf eConment Char (["*\'n])

Unsaf eComment Char ("*")

%0

\"{StringChar}*\" {printf("%", yytext);} /* string */

\" {Char Char}\’ {printf("%", yytext);} /* character */
{Layout }*{ St ar t Conmrent } {BEG N Comment ; }
<Comment >{ Saf eComment Char } + {} [/* safe comment chunk */
<Comment >{ Unsaf eComment Char } {} /* unsafe char, read one by one */
<Comment >"\ n" {} /* to break up long comments */
<Comment >{ EndConmment } {BEG N I NI TIAL; }

Figure Answers.5 Lex filter for removing comments from C program text.

mare.

Initially use a hash table of size N, as usual, and implement it in an extensible array. When the table gets
crowded, for example when there are more than N identifiers, extend the table to twice its size and adapt the
hash function. Go through the occupied half of the table, and for each chain recompute the hash values of
its elements. Since k MOD (2*N) is either k MOD N or k MOD N + N (prove!), the chain splits into two
chains, one that stays where it was and one that will be located in the newly allocated part, at an address that
is N higher. Both will be equally long on the average; this distributes the identifiers evenly. This process
can be repeated as often as required, memory permitting.

It isn't as simple as that. It depends on the amount of interaction of the macro processing with the lexical
analysis of larger units, for example strings and comments. In C the scheme is hare-brained since it would
require the macro processor to do almost full lexical analysis, to avoid substituting inside strings and com-
ments. But in a language in which macro names have an easily recognizable form (for example in PL/I, in
which macro names start with a %9, there is no such interference, and a better structuring of the compiler is
obtained by a separate phase. But the loss in speed and the large memory requirements remain. Also, with
full macro processing preceding compilation, it is very difficult to reconstruct the source text as the com-
piler user seesit.

Answer for N=3 in Figure Answers.6.
Figure Answers.7 shows an LALR(1) suffix grammar for the grammar of Figure 2.84.

Addition is commutative, a+b=b+a, but subtraction is not, a-b#b-a. So, when 9+3+1 isincorrectly inter-
preted as 9+( 3+1) , no great harm is done, but when 9- 3- 1 is incorrectly interpreted as 9- (3- 1), an
incorrect answer results.

See Hanson (1985).
Collect invariants that hold when each routine is called and propagate them to the routines themselves.

(8 LL(1) and e-free. (b) Predictive isstill more efficient.
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GENERI C PROCEDURE F1(Type) (paraneters to F1):
SET the Type variable Var TO ...;
/'l some code using Type and Var

GENERI C PROCEDURE F2( Type) (paraneters to F2):
FUNCTI ON F1_1(paraneters to F1_1):
| NSTANTI ATE F1(Integer);
FUNCTI ON F1_2(paranmeters to F1_2):
| NSTANTI ATE F1(Real);
SET the Type variable Var TO ...;
/1 some code using F1_1, F1_2, Type and Var

GENERI C PROCEDURE F3(Type) (paraneters to F3):
FUNCTI ON F2_1(paranmeters to F2_1):
| NSTANTI ATE F2( I nt eger);
FUNCTI ON F2_2(paranmeters to F2_2):
| NSTANTI ATE F2(Real ) ;
SET the Type variable Var TO ...;
/'l some code using F2_1, F2_2, Type and Var

Figure Answers.6 An example of exponentia generics by macro expansion.

% oken | DENTI FI ER
% oken EOF
W

i nput _suffix :
expression_suffix EOF | EOF ;
expression :
term| expression '+ term;
expression_suffix :
termsuffix | expression_suffix '+ term| "+ term;
term:
IDENTIFIER | ' (' expression ')’ ;
termsuffix :
expression ')’ | expression_suffix ") | ") ;

Figure Answers.7 An LALR(1) suffix grammar for the grammar of Figure 2.84.

The recursion stack consists of alist of activation records, each of which defines an active routine; only the
top oneis running. Each activation record contains a continuation address (often called return address) tel-
ling where the routine should continue when it becomes the top node. The code from the continuation
address to the end of the routine consists of zero or more routine calls. These calls represent what is being
predicted and the corresponding grammar symbols are part of the prediction stack. Thus each activation
record represents part of the prediction stack; the total prediction stack is the concatenation of al these
parts, in the order of the activation records. Additional exercise: draw a picture that illustrates the above
explanation in a clear way.

@S - aNb | Nc; N - & FOLLOW(N) ={ b, c}, butinitialy, only c can follow N and after an a
has been seen, only b can follow N.

(b) We predict a nullable aternative of N only if the input token isin the actual follow set; only then do we
have the guarantee that the next input token will be matched eventually.
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(c) For B B,...3,, stack n pairs (By, K), where K = FIRST(By1..-Bn) if Bysz---B, does not produce €, and k =
FIRST(Biss---Bn) O O if Byss...B, does produce €.

(d) On input b, the strong-LL(1) parser predicts N - €, since b isin FOLLOW(N), but the full-LL(1)
parser detects the error since b isnot in {a, $}. Something similar happens on the input ac with the token
c.

(e) Suppose the grammar has anon-terminal N with a FIRST/FOLLOW conflict; then N has a nullable alter-
native, say A;, and there is a token, say t, that is both in a FIRST set of an aternative, say A, and in
FOLLOW(N). Sincet isin FOLLOW(N), there must be afull-LL(1) pair (N, 0), witht ino. That pair has
afull-LL(1) conflict, since we still do not know whether to predict A, or the nullable alternative A;.

(f)S -> xNab | yNbb ; N -> a | & FOLLOW_2(N)={ab, bb}. Strong-LL(2) cannot decide
between N -> a {ab, bb} which applies for look-aheads { aa, ab} and N -> ¢ {ab, bb}
which applies for look-aheads { ab, bb}. Full-LL(2) has separate prediction pairs (N, ab), occurring
after x and (N, bb), occurring after y. So it can decide both between N -> a {ab} which applies for
look-ahead { aa} and N -> ¢ {ab} which applies for look-ahead { ab}, and between N -> a {bb}
which appliesfor look-ahead { ab} andN -> ¢ {bb} which appliesfor look-ahead { bb} .

See Figure Answers.8.

stack continuation FIRST set
par ent hesi zed_expressi on rest_expressi on EOF {0}
(' expression ')’ rest_expression EOF T
expression ')’ rest_expressi on EOF { IDENTIFIER ' (" }
termrest_expression ')’ rest_expression EOF { IDENTIFIER " (" }
| DENTI FI ER rest _expression ')’ rest_expression EOF | DENTIFI ER
rest_expression ')’ rest_expression EOF { '+ ¢}
")’ rest_expression EOF )’
rest_expression EOF { '+ ¢}
EOF ECF

Figure Answers.8 Stack continuations with their FIRST sets.

Acceptableset: { * (* ')’ '+ | DENTIFIER EOF }.

The acceptable set of anon-terminal N is the union of FIRST(N) and the acceptable set of the shortest alter-
native of N. So, the acceptable sets of all non-terminals can be precomputed using a closure algorithm.
Now, if the prediction stack is available directly (as an array or alinked list), we can traverse the stack and
compute the union of the acceptable sets of the symbolsin it. In LLgen, however, the prediction stack is
just the C stack and is not available for traversal. LLgen keeps an integer array indexed by grammar sym-
bols counting how many times a given symbol is present on the stack. Thisinformation is easily maintained
and suffices to compute the acceptable set.

Since the input ends in a EOF token, o must consist of zero or more grammar symbols, followed by EOF or
it would never match the EOF. The imaginary parser steps forced by an empty input remove the grammar
symbols one by one, leaving the single EOF as the last stack configuration. Its FIRST set contains EOF.

(a) When the ACTION table calls for a ‘reduce using rule N - a’, the item set corresponding to the state on
the top of the stack contains the item N - ae. The dot can only be at the end of a when it has just passed
over the last member of a, which must therefore be just below the top state on the stack. This reasoning
applies successively to al other members of a, which must therefore also be on the stack.

(b) The item set preceding a on the stack must contain the item N - ea, or no a would be recognized and
no item N—ae would eventually be found. The item N - ea must have originated from some item
P - BeNy. The presence of this item guarantees that a transition on N is possible, leading to a state that
includes P - BN ey.
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249 A value ‘shift’ inan ACTION table entry does not conflict with ancther ‘shift’ value in that same entry, but
a ‘shift’ and a ‘reduce’ do. So do a ‘reduce’ and another ‘reduce’, since they are actually two different
‘reduces’: ‘reduce to M’ and ‘reduceto N'.

250 See Figures Answers.9, Answers.10, and Answers.11. The LR(0) automaton isidentical to those in Figures
Answers.9 and Answers.11 with the look-ahead sets removed and does not need to be shown here.

O shift-reduce

S->. xSx{ $}
S->. x{ $}

Figure Answers.9 The SLR(1) automatonforS - X S x | X.

251 Thetree hastheform !L (x ] (x) ) n-1 and the last x isthefirst handle, in any bottom-up parser.
Soadlthe[ (x ] must be stacked.

252 (e YesifA -~ P Q| QadQ - A |

254 See Figure Answers.12.
This grammar is unambiguous and will pair the el se to the nearest unpairedi f .

2.55 After rule 2, add: ‘If t and u are the same operator: if the operator is left-associative, reduce, otherwise
shift.’

2.57 When meeting empty input, the only stack element is the state S,, which is easily derived from that in Fig-
ure 2.97 and which is shown in Figure Answers.13. No elements are removed from the stack since there is
dready an error-recovering state on top. Next a dummy node err oneous_A (caled err _A in the
diagram) is constructed and stacked. Thisresultsin state S,, to be stacked. Since EOF ($) isthe next input
token, er r oneous_A isreduced to A, which is stacked. Parsing then proceeds as nhormal. The resulting
parsetreeisS - A - erroneous_A.

2.58 In a pure bottom-up parser no such pointers exist: trees are constructed before their parents, and the only
pointer to a tree is the one on the stack that is used to discard the tree; the stack entry that contains it is
removed by the recovery process. If other pointers have been created outside the parsing mechanism, these
must be found and zeroed.
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O shift-reduce O shift-reduce

So
S->x. Sx{$ S->x. Sx{x
S->. xSx{ $} S->x.{$ ) S->x. {x }
o S50 g2 e

Figure Answers.10 TheLR(1) automatonforS - x S x | Xx.

[ shift-reduce 0 shift-reduce

S->. xSx{ $}
S->. x{ $}

Figure Answers.11 The LALR(1) automatonforS - x S x | x.
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if_statenent - short_if_statenent | |long_if_statenent
short_if_statenent - 'if’ ' (' expression ')’ statement
long_if_statenment -

if’ (" expression ')’ statement_but_not_short_if

‘el se’ statenent

statement _but _not _short_if - long_if_statement | other_statenent
statement - if_statenment | other_statenent
ot her _statenent - ...

Figure Answers.12 An unambiguous grammar for the if-then-else statement.

A->B. {$}

SH

Figure Answers.13 State S, of the error-recovering parser.

Answers for Chapter 3

3.1 (& N (non-terminal); (b) N; (c) P (production rule); (d) P; (e) N; (f) P; (g) P; (h) N.

3.2 For anon-terminal N, some of its production rules could set some attributes and other rules could set other
attributes. Then the attributes in a tree with a node for N in it could be evaluable for one production (tree)
of that N, and not for another. This destroys the composability of context-free grammars, which says that
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anywhere an N is specified, any production of N is acceptable.

3.3 The topological sort algorithm of Figure 3.16 will fail with infinite recursion when there is a cycle in the
dependencies. A modified algorithm with cycle detection is given in Figure Answers.14.

FUNCTI ON Topol ogi cal sort of (a set Set) RETURNING a |ist:
SET List TO Enpty list;
SET Busy list TO Enpty list;
WHI LE there is a Node in Set but not in List:
Append Node and its predecessors to List;
RETURN Li st;

PROCEDURE Append Node and its predecessors to List:
/1 Check if Node is already (being) dealt with; if so, there
/Il is a cycle:
IF Node is in Busy list:
Panic with "Cycle detected";
RETURN,
Append Node to Busy list;
/1 Append the predecessors of Node:
FOR EACH Node_1 IN the Set of nodes that Node is dependent on:
IF Node_1 is not in List:
Append Node_1 and its predecessors to List;
Append Node to List;

Figure Answers.14 Outline code for topological sort with cycle detection.

34 SeeFigures Answers.15 and Answers.16.

Figure Answers.15 Dependency graphsfor S, A, and B.

35 SeeFigures Answers.17 and Answers.18.

3.6 (&) Figure Answers.19 shows the dependency graph of S, Figure Answers.20 the S-Sl graph of S.
(b) €i 1,i2},{s1,s2}).
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A from B

Figure Answers.16 1S-Sl graph of A.

Figure Answers.17 Dependency graphsfor S and A.

(c) 1 routine:
parent prepares S.i 1 and S.i 2:

PROCEDURE Visit_1 to S (il, i2, sl, s2):
/1 S.il and S.i2 available -

SET U.i TO f2(S.i2); /1 - Ui available
Visit_1to U (Ui, Us); /1 - U.s available
SET T.i TOf1(S.il1, Us); /1 - T.i available
Visit_1to T (T.i, T.s); /l - T.s available
SET S.s1 TO f3(T.s); /1 - S.sl available
SET S.s2 TO f4(U.s); /1l - S.s2 available

or any other dependency-conforming order. (Exercise: find another order).

3.7 (&) SeeFigure Answers.21.
(b) {i 2,s2}), {i 1,s1}).

(c) 2 routines:
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IS-SI graph set of A

][] a (] (2] (1] [i2] a [51] [#2]

N

merged |S-S| graph of A

i1 ] iz ]| Aals1]|s2]

N

Figure Answers.18 S-Sl graph sets and IS-Sl graph of A.

Lit] [iz2]s|s1]|s2]

_/

i1 ] 7] st] it ] ust]

Figure Answers.19 Dependency graph of S.

(1] [i2] s [31] [2]

Figure Answers.20 1S-Sl graph of S.

parent prepares S. i 2:

PROCEDURE Visit_1 to S (il, i2, sl, s2):
// S.i2 available -
SET U.i TO f2(S.i2); /1 - Ui available
Visit_1to U(Ui, Us); /1 - U's available
SET S.s2 TO f4(U.s); /1l - S.s2 available

parent receives S. s2
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parent prepares S. i 1:

PROCEDURE Visit_2 to S (i1, i2, sl, s2):
/Il S.i2, Ui, Us, S s2, S.il available -

SET T.i TOf1(S.i1, Us); /1 - T.i available
Visit_1to T (T.i, T.s); /1 - T.s available
SET S.s1 TO f3(T.s); Il - S.sl1 available

parent receives S. s1

L

Li1] [iz2]s|s1]|s2]

o N S

Figure Answers.21 IS-Sl graph of S.

3.8 From the absence of S| arrowsinthe IS-Sl graph of S we can conclude that all inherited attributes are avail-
able when S is visited; so there is no L-attribute problem there. The call to T, however, inVisit_1 to
S() must now precede the one to U. We cannot supply it with T. i , though, since that is available only
after the visit to U. So we pass a dummy parameter to T and extend T with another synthesized attribute
T. cont _i , which contains a representation of the computations to be performed when T. i is known.
Depending on the implementation language of the attribute evaluator, this representation could have the
form of an expression tree, a continuation routine, or perhaps just an ad-hoc indication. Anyway, its activa-
tion results in T. s to be computed; we assume a function Conput e() to be available for the purpose.
Notethat T. cont _i may be very complicated since T may have been forced to pass the problem on to its
children, and so on. All thisresultsintheroutineVi sit to S() shownin Figure Answers.22.

parent prepares S.i 1 and S.i 2:

PROCEDURE Visit to S (i1, i2, sl1, s2):
/1 S.il and S.i2 available -

Visit to T (-, T.cont_i); I/l - T.cont_i available
SET U.i TO f2(S.i2); /1 - Ui available
Visit to U (Ui, Us); /Il - U s avail able
SET T.i TO f1(S.il, U.s); /1 - T.i available
SET T.s TO Conpute(T.cont_i, T.i) /Il - T.s available
SET S.s1 TO f3(T.s); /1 - S.sl available
SET S.s2 TO f4(U.s); /Il - S.s2 available

Figure Answers22 Visit to S().

3.9 Thefact that no intervening visits to other children are needed shows that the production rule already has all
the information for the second visit. This may, however, not be the case in al production rules that have
thistype of child, so other production rules may require two non-consecutive visits.

3.10 See Figure Answers.23. Here, Concat concatenates a character representation to a string, and Checked
nunber val ue convertsastring to an integer, checking each digit in the string.
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Nunmber ( SYN val ue) -
Di git_Seq Base_Tag
ATTRI BUTE RULES
SET Nunber .value TO Checked nunber val ue(
Digit_Seq .repr,
Base_Tag . base);

Digit_Seq(SYN repr) -
Digit_Seq[1] Digit
ATTRI BUTE RULES
SET Digit_Seq .repr TO
Concat (Digit_Seq[1] .repr , Digit .repr);

Digit
ATTRI BUTE RULES
SET Digit_Seq .repr TODigit .repr;

Digit(SYN repr) -
Di gi t _Token
ATTRI BUTE RULES
SET Digit .repr TO Digit_Token .repr [O];

Base_Tag( SYN base) -
B
ATTRI BUTE RULES
SET Base_Tag .base TO 8;

"D
ATTRI BUTE RULES
SET Base_Tag . base TO 10;

Figure Answers.23 An L-attributed grammar for Nunber .

Hints: For each rule for each non-terminal N, do the following. Turn al inherited attributes of the children
of N into local variables of N. If achild used to get an inherited attribute i and returned a synthesized attri-
bute s, it now returns a function to be called with the value of i once it becomes available, which yields the
value of s. If i does not come available inside N, s cannot be computed now, and a new routine is created to
be passed on upwards.

See Figure Answers.24.
See Figure Answers.25.
See Figure Answers.26, and note that the code is a simplification over that from Figure 3.37.

Pass the list (stack representation) through the condition, since the condition is the first to be executed at run
time. Keep a copy of the resulting list, pass the resulting list through the body of the while statement, and
merge with the copy. This combines the possihilities of zero and multiple passes through the loop at run
time.

Pass the list (stack representation) through the body of the repeat-until statement, since the body is the first
to be executed at run time. Then pass the resulting list through the condition of the repeat-until statement,
since it will always be executed at run time.

We need two variables, the actual number needed here and a high-water mark. Simple symbolic interpreta-
tion suffices.

The successor of the then-part is the merge node at the end of the if-statement rather than its else-part, and it
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Wi | e_st at enent /

X
Conditio St at ement s
Figure Answers.24 Threaded AST of the while statement.
Repeat _st at enent /
X

St at enent s Condi tion

Figure Answers.25 Threaded AST of the repeat statement.

is correct that we enter that node with an empty list during symbolic interpretation, since we will never
reach the end of the if-statement from the end of the then-part when the program is run, due to the interven-
ing jump. Full symbolic interpretation works on the threaded AST rather than on the linear program text.

3.20 Simple symbolic interpretation touches the program text only once, so it runsin linear time. Full symbolic
interpretation involves repetition until convergence, which may in principle be non-linear. But as with most
closure agorithms, the number of repetitions involved barely depends on the size of theinput. Three to four
repetitions are amost always sufficient to reach convergence, so full symbolic interpretation too runs in
linear time, albeit with alarger constant factor. The same applies to the data-flow equations.

3.21 It violates requirement 4 in Section 3.2.2.1: the actions to be taken on constants do not subsume those taken
on variables. Quite to the contrary, any constant can be handled by code generated for variables but not the

other way around.
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#i ncl ude "parser.h" /* for types AST_node and Expression */
#i ncl ude "thread. h" /* for self check */

/* PRI VATE */
static AST_node *Thread_expressi on( Expression *expr, AST_node *succ) {
switch (expr->type) {
case 'D:
expr->successor = succ; return expr;
br eak;
case 'P:
expr->successor = succ;
return
Thr ead_expr essi on(expr->l eft,
Thread_expressi on(expr->right, expr)
)i

br eak;

}
/* PUBLIC */
AST_node *Thread_start;

voi d Thread_AST(AST_node *icode) {
Thread_start = Thread_expression(icode, 0);

}

Figure Answers.26 Alternative threading code for the demo compiler from Section 1.2.

There is no way to represent the value V in the IN and OUT sets nor can it be propagated using fixed KILL
and GEN sets.

For each IN parameter KILL = GEN = (1, for each INOUT or OUT parameter KILL = 10, GEN = 01.

X becomes initialized. Con: It sounds unreasonable and counterintuitive to get a variable initialized by
assigning the value of an uninitialized variable to it. Pro: The error in the program is probably the lack of
initialization of y; the further usage of x is independent of this error. Since a warning is aready given on
the assignment, no further warnings on subseguent — probably correct — uses of x seem appropriate.

(a) Note that the meet operator must be intersection, because if the expression isto be very busy at a point, it
must be evaluated on all paths going through this point. The equations are:

OUT(N) = N IN(M)

M=dynamic successor of N

IN(N) = (OUT(N) \ KILL(N)) O GEN(N)

(b) The expression is killed by an assignment to any of its operands. The GEN and KILL bits for x* x are
given below.

GEN(1) = 0 KILL(1) = 1
GEN() = 0 KILL(2) = 0
GEN(3) = 1 KILL(3) = 0
GEN(4) = 0 KILL@4) = 0
GEN(5) = 0 KILL(5) = 0
GEN() = 0 KILL(6) = O

(c) Solving the equations gives:
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IN() =0 OUT() =1
IN@ =1 OUT( =1
INB) =1 OUT(@®) =0
IN() =0 OUT(@) =0
IN(5) = 0 OUT(5) = 0
IN() = 0 OUT(6) = 0

The conclusion is that the evaluation of x* x can be moved to the position between statements 1 and 2, thus
moving it out of the loop.

Consider any routine with a flow-of-control graph that is a linear list from routine entry to routine exit.
Whatever the contents of the KILL and GEN sets, the IN and OUT sets will be computed in one scan
through the list, and there is no way to transport the information about the routine exit back to the last use of
avariable.

Answers for Chapter 4

4.1

4.2

4.3

Base the recursive descent on the rule that the shortest distance from a node N to a leaf is one plus the
minimum of the shortest distances from the children of N to the leaf. The recursive descent process will
visit the nodes close to leaves exponentially often, causing the algorithm to be exponential in the size of the
graph.

Now add memoization by saving the distance found in each node. Now no value needs to be recomputed,
and each nodeisvisited only once, resulting in alinear-time algorithm. Enjoy the spectacular speed-up!

See Figure Answers.27.

CASE Operator type:

SET Left value TO Pop working stack ();

SET Ri ght value TO Pop working stack ();

SELECT Active node .operator:
CASE ' +': Push working stack (Left value + Right value);
CASE " *':
CASE . ..

SET Active node TO Active node .successor;

Figure Answers.27 Iterative interpreter code for operators.

In principle, recursive interpreters, iterative interpreters, and compiled code can give the same error mes-
sages; the difference liesin the amount of work involved in producing the message, and therewith the likeli-
hood that the work will be expended and the message produced.

Recursive interpreters usualy retain and continually update the full symbol table and can, at any moment,
produce a fully symbolic snapshot of al data used by the program, including the calling stack. They aso
test the input values to any operation extensively and catch erroneous values before disaster strikes.

Iterative interpreters usualy retain the symbol table but do not use it as a database for storing the data. A
snapshot will have to be reconstructed from the bare data, matched to the symbol table. Input data to opera-
tions are still checked extensively.

Compiled code usually does not retain the symbol table, and a separate program may be needed to pry infor-
mation from the unstructured data found in memory. The testing of input data to operationsis usualy left to
machine instructions, which may or may not react to errors by producing traps or erroneous values. Traps
are caught by code which haslittle knowledge of what went wrong; erroneous values may propagate.
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44 A self-extracting archive works exactly like the ‘compiler’ of Section 4.2.1: there, the executable file con-
tains both the AST and the interpreter. A self-extracting archive contains both the contents of the archive
and the extraction code. Often, the archive is compressed, and the extraction code also contains decompres-
sion code.

45 The program:
int Progran{] = {'D,7,’D,1,’D ,5'P ,'+ ,'P, * "1’ 0};
The interpreter:

int main(void) {
int PC = 0O;
int Instruction;

while ((Instruction = Progranf PC++]) != 0) {
switch (Instruction) {
case ' D : Expression_D(PrograniPC++]); break;
case 'P': Expression_P(Progran] PC++]); break;

case '!': Print(); break;
}

}

return O;

}

4.6 Instead of a routine Expressi on_P, we could have two routines Expressi on_P_43 and
Expressi on_P_42, with bodies

voi d Expression_P_43(void) {
int e_left = Pop(); int e_right = Pop();
Push(e_left + e_right);

}

and

voi d Expression_P_42(void) {
int e_left = Pop(); int e_right = Pop();
Push(e_left * e_right);

}

and generate

Expression_P_43();
Expression_P_42();

instead of the Expr essi on_P callsin Figure 4.14.

4.7 (a) Aswe did for the register machine, we generate code for the heaviest tree first, but now, we can only do
this for commutative operators, because we cannot exchange operands. The weight computation must
account for thistoo, as shown in Figure Answers.28.

(b) The resulting code sequence:

Push_Local #b
Push_Local #b
Mul t _Top2
Push_Local #a
Push_Local #c
Mul t _Top2
Push_Const 4
Mul t _Top2
Subtr_Top2
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FUNCTI ON Wei ght of (Node) RETURNI NG an integer:
SELECT Node .type:

CASE Constant type: RETURN 1;

CASE Vari abl e type: RETURN 1;

CASE ...

CASE Add type:
SET Required left TO Weight of (Node .left);
SET Required right TO Weight of (Node .right);
IF Required left > Required right: RETURN Required |eft;
IF Required left < Required right: RETURN Required right;
/Il Required left = Required right
RETURN Required left + 1;

CASE Sub type:
SET Required left TO Weight of (Node .left);
SET Required right TO Weight of (Node .right);
IF Required left > Required right: RETURN Required left;
RETURN Required right + 1;

CASE . ..

Figure Answers.28 Adapted weight function for minimizing the stack height.

4.8 SeeFigure Answers.29.

FUNCTI ON Wei ght of (Node, Left or right) RETURNING an integer:
SELECT Node .type:
CASE Constant type: RETURN 1;
CASE Vari abl e type:
IF Left or right = Left: RETURN 1;
ELSE Left or right = Right: RETURN O;
CASE . ..
CASE Add type:
SET Required left TO Weight of (Node .left, Left);
SET Required right TO Weight of (Node .right, Right);
IF Required left > Required right:
RETURN Required left;
IF Required left < Required right:
RETURN Required right;
/1 Required left = Required right
RETURN Required left + 1;
CASE . ..

Figure Answers.29 Revised weight function for register-memory operations.

4.9 See Figure Answers.30; the ‘then’ gets 0.7, the ‘else’ 0.3; loop skipping gets 0.1, loop entering 0.9; the
cases get 0.4, 0.4, 0.2. Traffic at routine entry is arbitrarily set to 1. The first column gives the 17 equa-
tions; al can be solved by simple substitution, except those for e, f , and g, which need elimination. The
results are given in the second column. Note that we predict that for every time the routine is called, the
loop body A will be executed 6.3 times. Also note that the traffic out of the routine is again 1; what goesin
must come out.
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Equation Vaue
a=1 1.0
b=07a 0.7
c=03a 0.3
d="b 0.7
e =0.1 (d+f) 0.7
f =g 6.3
g =0.9 (d+f) 6.3
h=c 0.3
i =0.4h 0.12
j =0.4nh 0.12
k =0.2h 0. 06
I = 0.12
m=j 0.12
n =k 0.06
o=e 0.7
p = | +mtn 0.30
q = otp 1.0

Figure Answers.30 Traffic equations and their solution for Figure 4.97.

The flow graph is in Figure Answers.31 and the equations and their solution in Figure Answers.32. Gaus-
sian elimination will find the solution, but simple substitution suffices here: substitute h = j inj =
0. 9(g+h), yieding h = 0.9(g+h); solving for h yields h = 9g; substituting this in i =
0. 1( g+h) yieldsi g (what enters the second while loop must come out); we asohaveg = f = e
=d,i = b,anda 1. Substituting al thisind = 0. 9(a+b) yieldsg = 0. 9( 1+g), which after
solving leadstog = 9. Notethat ¢ = 1. Why isthat important? The rest is straightforward substitu-
tion.

These dependencies also express the requirement that all assignments to a variable are executed in sequen-
tial, left-to-right order.

See Figures Answers.33 and Answers.34.

(a) See Figure Answers.35.
(b) The input p of the second * p++ is dependent on the output p of the first * p++ and so its dependencies
differ from those of theinput p of thefirst * p++.

See Figure Answers.36.

Sand N cannot be the same node, since that would make the dependency graph contain a cycle because S
refersto N.

A ladder sequences starts at each graph root, except when that root has an incoming dependency. Not all
roots can have incoming dependencies, or the dependency graph would be cyclic.

Doing so will destroy the contents of register | 1 and may lead to incorrect codeif | 1 is till used in another
operation.

First code x, +, + into
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Figure Answers.31 Flow graph for static profiling of a nested while loop.

Equation Value
a=1 1.0
b =i 9.0
c = 0.1 (ath) 1.0
d =0.9 (ath) 9.0
e =d 9.0
f =e 9.0
g=f 9.0
h =j 81.0
i =0.1(g+h) 9.0
j =0.9 (g+h) 81.0

Figure Answers.32 Traffic equations and their solution for Figure Answers.31.

Load_Reg R2, R1
Add_Reg R3, R1
Add_Reg R4, R1
Store_Reg R1,x

yielding Figure Answers.37. Next codey, +, - into
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Figure Answers.33 The dependency graph before common subexpression elimination.
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Figure Answers.34 The dependency graph after common subexpression elimination.

Load_Reg R2, R1
Subtr_Reg R3, Rl
Add_Reg R4, R1
Store_Reg Rl,y

yielding Figure Answers.38. Then code R3, *, * into

Load_Const 2,R1
Mul t _Mem a, RL
Mul t _Mem b, R1
Store_Reg R1, R3

731
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/\
S\,

Figure Answers.35 The dependency graph of the expression * p++.

p

position triple
1 a* a
2 a* 2
3 @ *b
4 a+ @
5 b * b
6 @ + @&
7 @ = X
8 a- @
9 @+ &
10 @ =y

Figure Answers.36 The data dependency graph of Figure Answers.34 in triple representation.

yielding Figure Answers.39. Then code R2, * into

Load_Mem a, RL
Ml t _Mem a, R1
Store_Reg R1,R2

yielding Figure Answers.40. Finaly code R4, * into

Load_Mem b, Rl
Milt_Mem b, RL
Store_Reg R1,R4

resulting in the empty dependency graph.

1. Step 2 assigns registers to nodes. |If the top node of a ladder has already been assigned to a (pseudo-
Jregister, use that register instead of R1, and mark the (pseudo-)register so it will be given area register.
Note that you can do this only a limited number of times, and that this procedure interferes with further
register allocation.

2. If thenode M in step 2 is the bottom of the ladder, use R as the ladder register in step 3.

It would be useful since it would for example add the pattern trees:

cst*(reg*reg), (reg*reg)*cst
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Figure Answers.37 The dependency graph of Figure Answers.34 with first ladder sequence removed.

Figure Answers.38 The dependency graph of Figure Answers.37 with second ladder sequence removed.

4.23 Suppose the token set { a, bcd, ab, ¢, d } and the input abcd. Immediately returning the a yields 2
tokens, whereas 3 can be achieved, obviously.
Assume the entire input is in memory. Record in each item its starting position and the number of tokens
recognized so far. At each reduce item that says that N tokens have been recognized, add the I ni ti al
i tem set with token counter N+1 and the present location as starting point. Having arrived at the end of
the input, find the reduce item with the largest token counter and isolate the token it identifies. Work back-
wards, identifying tokens.

4.25 See Figure Answers.41 for the tree. A label evicts another label in the dynamic programming part when its
rewrite shows a gain on the cost or register usage scale, and no loss on the other scale. The resulting code is
shown in Figure Answers.42.

4.26 Removed, e, a, b, c. Addc withcolor 1, b with color 2, a with color 3, e with color 2, d with color 1.
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O

Figure Answers.39 The dependency graph of Figure Answers.38 with third ladder sequence removed.

R’\f
O

Figure Answers.40 The dependency graph of Figure Answers.39 with fourth ladder sequence removed.

#3->reg @6RL [
#3->reg @8R2
#4->reg @3R2

+ #7->reg @4R2

#5->reg @7RL
#5, 9->mem @OR1 [
#8->reg @R2

b *  #8,9->nem @2R2

->mem @RO
0 #2->reg @RL #5->reg @RL
#5,9->mem @ORL [J
4

*  #6->reg @R2
->cst @RO
[0 #1->reg @RL
#1, 9->nem @R1
8

a
->cst @RO ->mem @R0
0 #1->reg @RL #2->reg @RL

#1, 9- >nem @R1

Figure Answers.41 Bottom-up pattern matching with costs and register usage.

4.27 (a) See Figure Answers.43.
(b) 3.

4.28 For the first instruction in the sequence we have 20* 2=40 combinations, using R1, R1 and R1, R2, or more
compactly {R1}, { Rl, R2}. For the second instruction we have 20*2*3=120 combinations, using
{R1, R2}, {R1, R2, R3}; for the further instructions we have 20*3*3=180 combinations each. In total
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Load_Const 8, R ;1 unit

Ml t _Mem a, R ; 6 units
St ore_Reg Rtnp ; 3 units
Load_Const 4, R ;1 unit

Ml t _Mem tmp, R ; 6 units
St or e_Reg R tmp ; 3 units
Load_Mem b, R ; 3 units
Add_Mem tnp, R ; 3 units

Tot al = 26 units

Figure Answers.42 Code generated by bottom-up pattern matching for 1 register.

a—tnmp_2ab— tnmp_bb —x —y

N2

tnp_aa

Figure Answers.43 The register interference graph for Exercise 4.27.

4800x180"2 combinations.

Estimating a weekend at 2.5 days, each of about 80000 seconds, we have about 2x10™ useconds, or 2x10%°
tests. So we want the largest N for which 4800x180"2 is smaller than 2x10%°. Now, 4800x180%2=1.5x10®
and 4800x180°2=2.7x10%, so N=4.

(a) Sincethe AST of P() actualy corresponds to the C code
void P(int i) {if (i < 1) goto _L_end; else Q); _L_end:;}

we get

{int i =0; if (i <1) goto _L_end; else ); _L_end:;}
(b)

{int i =0; if (0 <1) goto L _end; else ); _L_end:;}
©

{int i =0; if (1) goto _L_end; else ); _L_end:;}

(d)

{int i =0; goto _L_end; _L_end:;}

(e) Elimination of unused variables. The information whether a variable is unused can be obtained through
the techniques on checking the use of uninitialized variables described in Section 3.2.2.1.

Advantages of PC-relative addressing modes and instructions are:

— they require no relocation, thus reducing the work of the linker;

— they allow position-independent code, code that can be loaded anywhere in memory, without any modif-
ications;

— they may alow shorter instructions: an offset may fit in a byte whereas a full address usually does not.
Even if it does, the assembler still has to reserve space for afull address, because the linker may modify it.

An unlimited conditional jump can be translated to a conditional jump with the contrary condition over an
unconditional jump. For example,
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Junp_Not _Equal | abel 1 # junmp to labell if not equal
can be translated by

Junp_Equal L1 # junmp over Junp if equal
Junp | abel 1
L1:

Answers for Chapter 5

51

52

53

55

5.6

57

5.8

59

5.10

511

AssumeBegi nni ng of avail abl e menory isamultiple of 32. In Figure 5.2:

SET t he pol ynorphic chunk pointer First_chunk pointer TO
Begi nni ng of avail abl e menory + 28;

SET First_chunk pointer .size TO
(Size of available menory - 28) / 32 * 32;

In Figure 5.3:
SET Requested chunk size TO (Block size + 3) / 32 * 32 + 32;

The garbage collector will free chunks only when they are unreachable. If they are unreachable they cannot
be freed by the user since the user does not have a pointer to them any more. So it is safe to call the garbage
collector from Mal | oc() .

One can keep track of all calstomal | oc() and f r ee() during program execution, and analyze these
calls with a post-mortem program. Several leak-finding tools exist; they typically use modified versions of
mal | oc() and free() that write information about these calls to a file; the information typically
includes the address and size of the block, and a stack trace. The file is processed by an off-line program,
that finds blocks of memory that have been mallocked but not freed; the program then also prints the rou-
tinesfrom which mal | oc() was called (using the stack trace information).

How do you find this counter starting from the pointer to the record and how do you get the pointer by
which to return the block?

In the alocation of the arrays into which the code and data segments will be compiled; perhaps in the alo-
cation of the external symbol table.

In general, the garbage collection agorithms inspect pointer values, which will be (simultaneously) changed
by the application. Some garbage collection algorithms (for example two-space copying and compaction)
copy data, which is dangerous if the application can access the data in the meantime. Some algorithms
assume that the garbage collection only becomes active at specific pointsin the program (see Section 5.2.2),
which isdifficult to guarantee with a concurrent garbage collection.

Garbage collection algorithms will not handle this correctly, since they are unable to determine that the
block that p (or rather p & Ox7f ffffff) pointstoisstill reachable. Even conservative garbage collec-
tion will fail; in fact, it will probably not even recognize p as a pointer variable.

If the assignment p: =p isnot optimized away, if p pointsto achunk P with reference count 1, if P contains
a pointer to another chunk Q and if the reference count of Q is aso 1, then first decreasing the reference
count of P causes P to be freed, which causes Q to be freed. Subsequently increasing the reference count of
P will not raise the reference count of Q again and the pointer to Q in P will be left dangling. Also, on some
systems freeing P might cause compaction to take place, after which the chunk P would be gone entirely
and incrementing its reference count would overwrite an arbitrary memory location.

(c) Call number nto A will avoid the nodes that have been marked aready by calls number 1...n-1 and will
thus work on a smaller unmarked graph.

Refer to Figures Answers.44 and Answers.45. Introduce a global pointer Scan poi nt er, which points
to the first chunk that has not yet been scanned. Coalescing has been incorporated into the function
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Pointer to free block of size (Block size), which starts coalescing immediately and
starts scanning at the chunk pointed to by Scan poi nt er. If that does not work, perform the marking
phase of the garbage collection only, and scan, coalesce and search from the beginning.

SET t he pol ynor phic chunk pointer Scan pointer TO
Begi nni ng of avail abl e nmenory;

FUNCTI ON Mal | oc (Bl ock size) RETURNI NG a pol ynorphi ¢ bl ock pointer:
SET Pointer TO Pointer to free block of size (Block size);
IF Pointer /= Null pointer: RETURN Pointer;

Performthe marking part of the garbage collector;

SET Scan pointer TO Begi nning of available nmenory;
SET Pointer TO Pointer to free block of size (Block size);
|F Pointer /= Null pointer: RETURN Pointer;

RETURN Sol ution to out of menory condition (Block size);

FUNCTI ON Pointer to free block of size (Block size)
RETURNI NG a pol ynor phi ¢ bl ock pointer:
/1 Note that this is not a pure function
SET Chunk pointer TO First_chunk pointer;
SET Requested chunk size TO Adnministration size + Block size;

WHI LE Chunk pointer /= One past available menory:
| F Chunk pointer >= Scan pointer:
Scan chunk at (Chunk pointer);
| F Chunk pointer .free:
Coal esce with all follow ng free chunks (Chunk pointer);
I F Chunk pointer .size - Requested chunk size >= 0:
/1 large enough chunk found:
Split chunk (Chunk pointer, Requested chunk size);
SET Chunk pointer .free TO Fal se;
RETURN Chunk pointer + Adnministration size;
/1 try next chunk:
SET Chunk pointer TO Chunk pointer + Chunk pointer .size;
RETURN Nul | pointer;

Figure Answers.44 A Mal | oc() with incremental scanning.

512 See Sikléssy (1972).

5.13 Similarities:
(2) both gather reachable nodes and copy them to the beginning of a memory segment;
(2) the resulting free space is a single contiguous block of memory;
(3) the nodes change place so all pointers have to be rel ocated.
Differences:
(2) one versus two spaces (obvioudly);
(2) depth-first (compaction) versus breadth-first (copying) traversal;
(3) compaction touches al nodes in the heap when scanning for free nodes, copying touches reachable
nodes only;
(4) compaction uses a separate phase to compute the new addresses, copying computes them on-the-fly;
(5) compaction requires an additional pointer per node to hold the ‘new’ address, copying stores the forward
address in the ‘old’ node, thus avoiding space overhead per node.

5.14 The ‘overlapping lists' in the paper are dags.
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PROCEDURE Scan chunk at (Chunk pointer):
| F Chunk pointer .nmarked = True:
SET Chunk pointer .marked TO Fal se;
ELSE Chunk pointer .marked = Fal se:
SET Chunk pointer .free TO True;
SET Scan pointer TO Chunk pointer + Chunk pointer .size;

PROCEDURE Coal esce with all follow ng free chunks (Chunk pointer):
SET Next _chunk pointer TO Chunk pointer + Chunk pointer .size;
I F Next _chunk pointer >= Scan pointer:

Scan chunk at (Next_chunk pointer);
WHI LE Next _chunk pointer /= One past avail able nmenory
AND Next _chunk pointer .free:
/1 Coal esce them
SET Chunk pointer .size TO
Chunk pointer .size + Next_chunk pointer .size;
SET Next_chunk pointer TO Chunk pointer + Chunk pointer .size;
I F Next _chunk pointer >= Scan pointer:
Scan chunk at (Next_chunk pointer);

Figure Answers.45 Auxiliary routines for the Mal | oc() with incremental scanning.

Answers for Chapter 6

6.1
6.2

6.3

6.6

6.7

6.9

6.10
6.11

Values of type unsigned integer are aways >= 0.

In most languages we need to know if an identifier is a keyword or the name of a macro, long before its
name space is known. If we want to postpone the identification to the time that the proper name space is
known, we will need other mechanisms to solve the keyword and macro name questions.

The declarations are equivalent to:

type t1 = array[1..10] of int;
type t2 = array[1l..10] of int;
type t3 = array[1..10] of int;

A B tl;, B t2; C t3;

So A and B have the same type, B and C have different types (which are also different from the type of A
and B).

We have rvalue?V: V - rvalue. In principle, rvalue?lvalue: Ivalue could yield an Ivalue, but ANSI C
defines it to yield an rvalue. In GNU C an Ivalue results, but a warning is given under the - pedanti c

flag.
Can't be. The last scope rule forbids the creation of such values.

(a) Sizeis 24, aignment is 8.

(b) Sizeis 16, alignment is 8.

(c) This depends on what the language manual specifies, but even if the language manual does not forbid
the reorganization of record fields, there are severa reasons why a programmer may not want this: intero-
perability between languages, the modeling of 1/0 devices, etc.

See Figure Answers.46 and Answers.47.

Set union: the complication here isthat set elements must be represented only oncein the linked list. So, the
set union of two sets is constructed by first copying the first set, and then adding elements of the second set
to thelist, but only if they are not present in the first set.

Set intersection: the set intersection of two sets is constructed by creating an empty result set, and then
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zeroth_offset (A) = —(LB, xLEN_PRODUCT,
+LB,xLEN_PRODUCT,

+LB,xLEN_PRODUCT,)

Figure Answers.46 Formula for zeroth_offset(A).

base (A)+zeroth_offset (A)
+i;xLEN_PRODUCT ; +...+i,xLEN_PRODUCT,

Figure Answers.47 The address of Aliy, ..., i,].

checking for each element in the first set, whether it is also a member of the second set; if it is, we add it to
the result set, if it isnot, we ignoreit.

6.12 See Figure Answers.48.

| sShape_Shape_Shape | sShape_Shape_Shape
| sRect angl e_Shape_Rect angl e | sRect angl e_Shape_Rect angl e
| sSquar e_Shape_Shape | sSquar e_Shape_Squar e
Sur f aceAr ea_Shape_Rect angl e Sur f aceAr ea_Shape_Rect angl e
method table for Rect angl e method table for Squar e

Figure Answers.48 Method tables for Rect angl e and Squar e.

6.13 At run time, a class may be represented by a class descriptor which contains, among others, the method
table of the class. Such a class descriptor could also contain a pointer to the class descriptor of its parent
class. An object then contains a reference to its class descriptor instead of a reference to the method table.
Then, the implementation of thei nst anceof operator becomes easy, see Figure Answers.49.

6.14 The code for these calsis:

(*(e->di spatch_table[0]))(e);
(*(e->dispatch_table[2]))((class D *)((char *)e + sizeof(class Q)));
(*(e->dispatch_table[3]))((class D *)((char *)e + sizeof(class Q)));

Note that although n4 isredefined in class E, it still requires a pointer to an object of class D.
6.15 The code for method nb is:
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FUNCTI ON I nstance of (Obj, Class) RETURNING a bool ean;
SET Object Class TO Obj. O ass;
WHI LE Object Class /= No class:
IF Object Class = C ass:
RETURN true;
ELSE Object Class /= C ass:
SET Obj ect Class TO Cbject Class .Parent;
RETURN f al se;

Figure Answers.49 Implementation of thei nst anceof operator.

void nb_E E(Class_E *this) {
*(int *) ((char *)this + this->index_table[5]) =
*(int *) ((char *)this + this->index_table[4]) +
*(int *) ((char *)this + this->index_table[1]);

}

For example, when the caller calls severa routines consecutively, the ‘caller saves' scheme allows saving
and restoring only once, whereas the ‘ callee saves' scheme has no option but to do it for every call. Also, in
the ‘callee saves' scheme the callee has to save and restore all registers that might be needed by any caller,
whereas the ‘caller saves' scheme allows for saving and restoring only those registers that are needed for
this particular caller, at this particular cal site.

See the code in Figure Answers.50.

void do_elenments(int n, int element()) {
int elem= read_integer();

int new elenment(int i) {
return (i == n ? elem: elenent(i));
}
if (elem==0) {
printf("median = %0, elenment((n-1)/2));

}
el se {

do_el ements(n + 1, new_el enent);
}

}

voi d print_nedian(void) {
int error(int i) {
printf("There is no el ement number %0, i);
abort();
}

do_el ements(0, error);

Figure Answers.50 Code for implementing an array without using an array.

6.19 It cannot, since the same closure may be fully curried and invoked several times, and different activation

records have to result.
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The binary tree must be balanced, or the generated code could be as inefficient as the linear search scheme
described earlier. If the tree has the smallest case label on top, al other case labels will be in the right
branch, and the generated code is as inefficient as linear search in a sorted list.

We consider the following case statement:

CASE case expression | N
I,: statement sequence,

I,; statement sequence,
ELSE else- statement sequence
END CASE;

The hash table entries consist of (I, | abel _k) pairs, and the hash table keys are the |, values. We then
generate the code of Figure Answers.51.

tmp_hash_entry := get_hash_entry(case expression);
IF tnp_hash_entry = NO_ENTRY THEN GOTO | abel _el se;
GOTO tnp_hash_entry. | abel ;
| abel _1:
code for statement sequence,
GOTO | abel _next;
| abel _n:
code for statement sequence,
GOTO | abel _next;

| abel _el se:
code for else- statement sequence
| abel _next:

Figure Answers.51 Intermediate code for a hash-table implementation of case statements.

A possible trandation of the repeat statement to intermediate code is:

repeat _| abel :
code for statement sequence
code to eval uate Boolean expression i nto condition register
I F NOT condition register THEN GOTO repeat _| abel ;

For the two while statement schemes, the cont i nue_| abel should be placed at thet est _I abel ; the
br eak_I abel should be placed at the end (where end_I abel isin the first scheme). In the general
for-statement scheme of Figure 6.40, the br eak | abel should be placed a the end_| abel ; the
conti nue_| abel should be placed right in front of the decrement of t np_I| oop_count .

A continue statement transfers control to expr 3 in the body of the for-statement, but to expr 2 in the body
of the while-statement, as shown in Figure Answers.52.

A continue statement inside the body of a for-loop would have the effect of a jump to
forl oop_continue_l abel : expr 3 would still be evaluated before continuing with the next iteration;
inawhileloop, the effect isajump towhi | el oop_conti nue_| abel .

This may cause overflow, because the controlled variable may then be incremented beyond the upper bound
(and thus possibly beyond the maximum representable value).

See Figure Answers.53.

Pushing the last parameter first makes sure that the first parameter ends up on the top of the stack, regard-
less of the number of parameters. Unstacking the parameters will therefore yield them in textual order.
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expr1;
while (expr2) {
body;
forloop_continue_l abel :
expr3;
/* whil el oop_continue_| abel: */
}

Figure Answers.52 A while loop that is exactly equivalent to the for-loop of Figure 6.41.

i := lower bound;

trp_ub : = upper bound - unrolling factor + 1;

IF i > tnp_ub THEN GOTO end_| abel ;

trmp_l oop_count := (tnp_ub - i) DIV unrolling factor + 1;
| oop_I abel :

code for statement sequence

i =0 + 1

code for statement sequence
=0+ L /1 these two |ines unrolling factor tinmes
tnp_l oop_count := tnp_l oop_count - 1;
|F tnp_l oop_count = 0 THEN GOTO end_| abel ;
GOTO | oop_| abel ;
end_| abel :

Figure Answers.53 Loop-unrolling code.

A divide-by-zero exception may occur for the first division; the handler may execute any code, for example
perform assignmentsto A and B:

begin
X
Y :
exception
when DI VI DE_BY_ZERO ERROR =>
B:=1;, A:=A- 1;

Al B;
Al B;

end;
The ‘optimized’ code will then clearly behave differently from the original code.

Two new operations must be supported: instantiation of a generic routine which is a parameter, and passing
ageneric routine as a parameter to an instantiation. The consequences from a compiler construction point of
view are modest. When implementing instantiation through expansion, the first instantiation to be dealt
with resides within a non-generic unit. Therefore, a generic routine parameter is available as an AST, which
can be copied and processed just asthe AST of an ordinary generic unit.

One issue that must be dealt with, weather the language has generic routine parameters or not, is cycle
detection: when one generic unit contains an instantiation of another generic unit, the result is a chain of
instantiations, which must be terminated by the instantiation of a generic unit which does not contain further
instantiations. If thisis not the case, the implementation through expansion scheme will fail. Without gen-
eric routine parameters, detecting this situation is easy: when a generic unit occurs twice on the instantiation
chain, there isa cycle. With generic routine parameters, when an identical instantiation (same generic unit
and same instantiation parameters) occurs twice on the instantiation chain, thereisacycle.
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When implementing instantiation through dope vectors, a generic routine has a code address, and can be
passed as a parameter, just like an ordinary routine.

Answers for Chapter 7

7.2 Thetypeoffol dr is
foldr :: (a->b ->b) ->b ->[a] ->b

7.3 Thedefinition of the dot operator is
dot :: (a ->b) ->(c ->a) ->c ->b
dot f g x =f (g x)

7.4 The functional-core equivalent of "1 i st" is(Cons "I’ (Cons 'i’' (Cons 's' (Cons 't’
[1)))) . thatof [1..481] isrange 1 481.

7.5 SeeFigure Answers.54.

unique al = if (_type_constr al == Cons &&

_type_constr (_type_field 2 al) == Cons) then
| et
a = _type_field 1 al
b = _type_field 1 (_type_field 2 al)
cs = _type_field 2 (_type_field 2 al)
in
if (a ==Db) then a : unique cs
el se a : unique (b:cs)
el se
al

Figure Answers.54 A functional-core equivalent of the function uni que.

7.6 (& One should not write functions that fail for some arguments (but sometimes one has to). (b) One should
not call afunction with arguments for which it will fail (but that is sometimes hard to know).

7.8  See Figure Answers.55.

gsort [] =[]
gsort (x:xs) = gsort (mappend gleft xs) ++ [x]
++ gsort (nmappend qright xs)
wher e
gleft y =if (y <x) then [y] else []
gright y = if (y > x) then [y] else []

Figure Answers.55 A functional-core equivalent of the function gsort .

7.9 SeeFigure Answers.56.

7.10 Any recursive function will fail to terminate when its if-then-else expression is replaced by an applicative-
order function that implements the conditional, since applicative-order reduction will evaluate both the then-
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gsort [] =11
gsort (x:xs) = gsort (mappend (gleft x) xs) ++ [X]
++ gsort (mappend (qgright x) xs)

gleft xy =1if (y <x) then [y] else []
gright x y =if (y > x) then [y] else []

Figure Answers.56 A functional-core lambdarlifted equivalent of the function gsort .

and else-expressions before calling the conditional function:
cond bt e=if bthent else e

fac n = cond (n==0) 1 (n * fac (n-1))

The following program uses the value of the expression f ac 20 2%° times:

tree 0 val = val
tree nval =let t =tree (n-1) val in t*t

main = print (tree 10 (fac 20))

Eval () must be extended with an additional case to handle the indirection nodes:

case | ND:
node = node->nd. i nd;
br eak;

Also, the update must be changed into:

root->tag = | ND; /* update */

root ->i nd = node;
C does not alow forward references to local variables.
Pnode rep(Pnode *arg)

{
Pnode n = arg[O0];
Pnode | st = Cons(n, NULL);
I st->cons.tl = Ist;
return |st;

}

Thefunction f isstrictinp only.

Substitute equal _eval uat ed, nul _eval uat ed, and sub_eval uat ed by their operators, which is
alowed due to strictness. Thisis the partial evaluation component: actions that will certainly be performed
at run time are done at compiletime. Result:
Pnode fac_eval uat ed(Pnode _arg0) {

Pnode n = _argo;

return Num(n->nd. num == Num(0) - >nd. nun) - >nd. num ? Nun( 1)
Num( n->nd. num *
fac_eval uat ed( Nun{n->nd. num - Num(1)->nd. num)->nd. nun;
}

ReplaceB ? F(x) : F(y) by F(B ? x : y); replace Nun( x) - >nd. numby X; result:
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Pnode fac_eval uat ed(Pnode _arg0) {

Pnode n = _argO;
return Num(
n->nd.num==0 ? 1
n->nd. num * fac_eval uat ed(Num(n->nd. num - 1))->nd. num
)
}
Introduce i nt  n_num == n->nd. num in fac_eval uated() and substitute; introduce i nt

fac_unboxed(int n) {return fac_evaluated (Num(n))->nd.num}; replace
fac_eval uated (Nun(n))->nd. numbyfac_unboxed(n) infac_eval uat ed();in-linethe
cal of fac_eval uat ed inf ac_unboxed() ; result:

int fac_unboxed(int n_arg) {
Pnode n = Nun(n_arg);
int n_num = n->nd. num
return (
Num(n_num == 0 ? 1 : n_num* fac_unboxed(n_num- 1))
) ->nd. num
}

Clean up the in-lining debris; replace more Nun{( x) - >nd. numby Xx; result:

int fac_unboxed(int n_arg) {
return n_arg == 0 ? 1 : n_arg * fac_unboxed(n_arg - 1);

}

7.17 We need zero or more temporary locations Tenp[ ] at runtime. Store the assignment set A in the variable
Assi gnment set. First remove from Assi gnnent set all assignments of the form P_newf i ]
= P_old[i],foranyi . Then usethe agorithm from Figure Answers.57.

WH LE Assignnent set /= Enpty assignnent set:
/'l Get a doabl e assignnent:
IF there is an Index SUCH THAT

(P_new{Index] := a) is in the Assignment set AND
P_ol d[ I ndex] occurs at nost in a:
/1 P_new I ndex] := a is doable:

SET Next TO I ndex;
ELSE there is no such Index:
/1 Make room for a doabl e assignnent:
CHOOSE a (P_newf I ndex] := a) FROM the Assignnment set;
CHOOSE Scratch SUCH THAT
Tenp[ Scratch] does not occur in the Assignnment set;
Generate code to nove P_old[Next] to Tenp[Scratch];
Substitute Tenp[Scratch] for P_ol d[ Next]
in the Assignnent set;
/1 Now P_new | ndex] := a is doable:
SET Next TO I ndex;
Generate code for (P_new Next] := a);
Renmove (P_new{ Next] := a) fromthe Assignnment set;

Figure Answers.57 Outline code for doing in situ assignments.

Extended exercise: The choices of the assignment from Assi gnnment set and of the temporary variable
influence the amount of code and the number of temporary variables needed. Think of reasonable choice
criteria.
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7.18 Although the ++ (append) operator is associative, the amount of work differsfora ++ (b ++ c) and
(a ++ b) ++ c. Thisisa consequence of the append operator, which essentially creates a copy of its
first argument to ‘replace’ the null pointer with a pointer to the second list. In(a ++ b) ++ c thelista
is copied twice, whereas only one copy is required fora ++ (b ++ c¢). Transforming mappend into
an accumulating argument function would cause the sublists to be copied many times (depending on their
position).

7.19 There is no reduction in heap space since al lazy expressions alocated in the heap consist of a (built-in)
function with two arguments, which is the break-even point. The benefit isin the graph reducer, which does
not need to unwind application spines, but can call the suspended function immediately.

Answers for Chapter 8

8.1 For ?- grandparent(arne, Z) left-to-right is more efficient. It first binds Z to j anes and tries
parent (j ames, Z),which fails. Next, it binds Z to sachi ko, and tries par ent ( sachi ko, Z2),
which succeeds with Z=rivka. With a right-to-left search, the system will first try to solve
parent (Y, Z), where both Y and Z are unbound. So, the program will try all possible combinations of Y
and Z for which par ent (Y, Z) holds, until it finds a combination for which par ent (ar ne, Y) holds.
With the program of Section 8.1, the fourth combination (sachi ko, rivka) succeeds. For
?- grandparent (X, rivka), the situation is reversed, as now the first argument is unbound. So,
there is no single optimal search order.

8.2 Theinitial stack isagain
gp(arne, X), <<(" X", X)
Applying ‘Attach clauses with optimization resultsin:
[gp(arne, X) ?= gp(X1,Z1)], pa(X1, Y1), pa(Yl, Z1), <<(" X", X)
Unification resultsin:
[gp(arne, X) == gp(arne, X)], pa(arne, Y1), pa(Y1, X), <<("X", X)
Then, ‘Match’ removes the two unified goals:
pa(arne, Y1), pa( Y1, X), <<(" X", X)
Applying ‘Attach clauses with optimizations resultsin:

[ pa(arne, Y1) ?= pa(arne,janes)], pa(Yl, X), <<("X", X)
[ pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)

Unification on the top entry gives:

[ pa(arne, janes) ?= pa(arne,janes)], pa(janes, X), <<("X", X)
[ pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)

‘Match’ then removes the unified goals:

pa(j ames, X), <<("X", X)
[ pa(arne, Y1) ?= pa(arne,sachiko)], pa(Yl, X), <<("X", X)

‘Attach clauses' on the top entry leaves no entries, so we are left with
[ pa(arne, Y1) ?= pa(arne, sachi ko)], pa(Y1, X), <<("X", X)
which after unification and matching resultsin

pa(sachi ko, X), <<(" X", X)

Again an ‘Attach clauses' isrequired (with optimizations):

[ pa(sachi ko, X) ?= pa(sachiko, rivka)], <<("X", X)
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Unification succeeds with X=r i vka:

[ pa(sachi ko, rivka) == pa(sachi ko, rivka)], <<("X", rivka)
‘Match’ removes the unified goals, leaving us with a display goal:

<<(" X", rivka)

An effective optimization indeed.

The new paradigm implements breadth-first search rather than depth-first search. This usually takes (much)
more time, but will find a solution if one exists, unlike depth-first search which may work itself in an infin-
ite branch of the search tree. The discussed optimizations are all applicable to some degree.

The only interpreter instruction that may be affected is ‘Unify’. Perhaps surprisingly, during unification a
relation name can be handled just like a constant.

See Figure Answers.58. The code is an improvement over that of Figure 8.39 since it scans the list itera
tively whereas naive application of uni fy_st ruct ur es() would scan the list recursively.

int unify_lists(struct list *I_goal, struct list *I_head) {
int counter;
if (I _goal->arity !=1_head->arity) return O;
for (counter = 0; counter < |_head->arity; counter++) {
if (lunify_terms(
| _goal - >conponent s[ counter], | _head->conponents[counter]
)) return O;

}

return 1,

Figure Answers.58 C code for the unification of two lists.

EtoC CtoB,DtoB,Bto A

The number of values returned in general is unbound, so an infinite list may have to be returned.
See Figure Answers.59

Replace the code segment

/* translation of ’parent(Y,Zz).’ */
void first_gp_2_clause_1_goal _3(void) {
parent _2(Y, goal _arg2, goal _list_tail);

}
in Figure 8.24 by
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voi d intersect(
void listl(void (*Action)(int v)),
void list2(void (*Action)(int v)),
void (*Action)(int v)

void in_list2(int v) {
void equal _to_v(int v2) {
if (v == v2) Action(v);
}

}
listl(in_list2);

list2(equal _to_v);

Figure Answers.59 A list procedure that implements integer list intersection.

/* translation of 'parent(Y,2z),!." */
void first_gp_2_clause_1_goal _3(void) {
/* translation of "!.’ */

void first_gp_2_clause_1_goal _4(void) {
goal _list_tail();
goto L_cut;

}

/* translation of 'parent(Y,2),’ */
parent _2(Y, goal _arg2, first_gp_2_clause_1_goal _4);
}

8.12 The asserts and retracts should not be undone by backtracking. Since the data structure in which the
asserted clauses are kept and the corresponding counters (for example,
nunber _of _cl auses_added_at _end_f or _parent _2 in Figure8.25) are globa variables, no
backtracking will occur, as required.

814 (g Trandate..., var(X), a. to
built_in_var(X, routine_for_a);

withbui I t _i n_var () defined asin Figure Answers.60.

void built_in_var(Term*t, Action goal _list_tail) {
Term *arg = deref(t);

if (arg->type == Is_Variable) {
goal _list_tail();

}

Figure Answers.60 A C routine for implementing bui | t _i n_var ().

(b) See Figure Answers.61

8.15 A first implementation is shown in Figure Answers.62 where Ter m *put _i nt eger (i ) creates a con-
stant term with the value|i , but the code needs optimization.
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void built_in_is(Term*tl, Term*t2, Action goal _list_tail) {
Term *arg = deref(t1);
Term *expr = eval uate_expression(t2);

if (arg->type == Is_Variable) {
arg->termvariable.term = expr;
goal _list_tail();
arg->termvariable.term= 0;

}
el se
if (arg->type == Is_Constant
&% atoi (arg->termconstant) == atoi (expr->term constant)
) |
goal _list_tail();
}

Figure Answers.61 A Croutine for implementing bui I t _i n_i s().

voi d built_in_between(
Term*t1l, Term*t2, Term *t3,

Action goal _list_tail
) {
Term *arg = deref(t1);
Term *exprl = eval uate_expression(t2);
Term *expr2 = eval uat e_expression(t3);
if (arg->type == Is_Variable) {
int from= atoi(exprl->termconstant);
int to = atoi (expr2->termconstant);
int i;
for (i =from i <to; i++) {
arg->termvariable.term = put_integer(i);
goal _list_tail();
arg->termvariable.term= 0;
}
}
el se
if (arg->type == Is_Constant
&% atoi (exprl->termconstant) <= atoi(arg->term constant)
&& atoi(arg->termconstant) <= atoi (expr2->term constant)
) |
goal _list_tail();
}
}

Figure Answers.62 A first implementation of acompiled bet ween.

Answers for Chapter 9

9.1 No; shared variables are easier to use than message passing. Also, on a shared-memory machine, shared-
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variable programs often get better performance than message passing programs, because message passing
programs do more copying.

To send amessage ne g to processor P, do:

out ("message", "P", nsg);

If processor P wants to receive a message, it executes:
in("nmessage", "P"', ? &rBQ);

To creste ashared variable X with initial value V execute:

out ("shared variable", "X, V);

To read the value of the shared variable into alocal variable, execute:
read("shared variable", "X', ? &ar);

To write anew value into the variable, execute:

in("shared variable", "X", ? &ar); /* discard old value */
out ("shared variable", "X', newalue);

Figure 9.4 suggests that most of the thread state is independent of the CPU architecture, except maybe for
pointer sizes. However, the register information depends strongly on the CPU type. Some CPUs, for exam-
plethe Intel architectures, have few registers to save, while others, for example the Sparc, have many regis-
ters.

No; the lock that is used to protect the administration can use spinning, because the operations on the list are
very simple and will not block for along time.

First try to acquire the lock severa times using busy waiting; if it till is taken after a certain number of
tries, then do athread switch. This will work efficiently for fine-grained locks, which are acquired for only
avery short time.

(a) The first operation that succeeds in acquiring the monitor lock will continue. The second operation,
however, will block on the monitor lock, and thus cannot continue until the first operation has released the
lock. Thus, although the two operations could in principle be executed simultaneously, the implementation
of amonitor runs them sequentially.

(b) 1. Use symbalic interpretation to find those operations that are read-only. 2. Use a multi-state lock to
protect the monitor: nobody inside, some readers inside, some readers inside and one or more writers wait-
ing, and one writer inside.

Without this restriction, a message sent to a port can be accepted by many different processors, so the run-
time system would have to communicate with different processors to check which one currently has a pro-
cess that is willing to receive a message from the port. With the restriction, the run-time system merely
needs to maintain a mapping between ports and processors; a message sent to a port is sent to the processor
currently listening to the port.

The first case is fairly easy to implement: the run-time system just checks among the messages that have
been sent to this process whether there is one that matches the criteria. This can be implemented without
doing any extra communication. In the second case, the run-time system would have to communicate with
other processors, to seeif they have a process that is ready to receive.

It is difficult to copy the stack of athread, because there may exist variables that point into the stack. In C,
for example, it is possible to take the address of alocal variable (stored on the stack) and store this value in
aglobal variable. If the stack is copied to a new region in memory, the global variable will still point to the
location in the original stack. So, migrating a stack from one memory region to another is hard to imple-
ment transparently.

Since X contains a thread, it is harder to migrate, since threads always have a state that has to be migrated
(for example, a stack); moreover, thread migration has the same implementation difficulty as stack migra-
tion, as described in the answer to Exercise 9.10. Migrating object Y is easier and less expensive, since it
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does not contain a thread. On the other hand, if multiple active objects (like X) located on different proces-
sors do operations on object Y, object Y will repeatedly be moving between these processors. In this case, it
may be more efficient to move the active objects to the processor of Y.

Suppose two different processes do a write operation on two different objects, X and Y, with different pri-
mary copies. Each primary copy broadcasts the operation to other processors containing a copy. The two
broadcast messages, however, are not ordered relative to each other, so some processors may get the update
of X first while others get the update of Y first, resulting in inconsistency. With totally ordered broadcast,
al broadcasts are ordered, so either the update of X arrives first at al processors, or the update of Y arrives
first at all processors.

(a) Hash-based: almost all CPUs will do 3 point-to-point communications to the same CPU, the one contain-
ing the max tuple. Broadcast outs: all CPUs will do 2 broadcasts (i n and out ) and one local operation
(r ead). Do outslocaly: aimost all CPUs will do 2 broadcasts (for i n and r ead).

(b) Optimized operations use some form of spanning tree to collect the result; every CPU sends a point-to-
point message to its parent in the tree, the parent takes the maximum and sends it to its parent, and so on,
until the result reaches the root of the tree. The root then does a broadcast. This is more efficient than the
Linda version.

The matching tuples may be on different processors; other Tuple Space operations should be prevented
from executing whilethef et ch_al | () isbeing executed.

No, al statements assign to different elements of A. There would have been a dependency between the first
two assignments if the upper bound of the loop had been 10.

The cache performance of the transformed loops will be much worse than that of the original code, assum-
ing that arrays are stored in row-order in memory. The reason is that cache entries are always fetched in
blocks of contiguous memory words, called cachelines. If the cache istoo small to contain the entire array,
the transformed code will repeatedly experience cache misses. On every miss, it will fetch a cache line, but
only use one word of it. The original code will use the entire cache line, and thus get fewer cache misses,
because it accesses contiguous words in memory.

Answers for Appendix A

Al

(a) In Java, C++, and probably in most other object-oriented languages, the * constructor’ is not a constructor
at al but rather an initializer. The rea constructor is the new, and when it has finished constructing the
object (building the house), the constructor is called to initialize it (move in the furniture). In Expr es-

sion Program = new Expression();,thenewallocates space for an Expr essi on, which will
not be large enough to hold any of its extended subtypes, and the constructor cannot stretch this space after-
wards. Also, it isthe newthat returns the object (or a pointer to it), not the constructor.

(b) Its constructor should be areal constructor, in which the programmer can allocate the space, possibly for
asubtype, initialize itsfields, and return the constructed object.
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goal 599
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implicit receipt 662

imported scope 448

i n operationin Linda 664, 679

in situ replacement 595, 745

inactive routine 485

incremental garbage collection 408, 436
independent inheritance 478

indexing 468

indirect left-recursion 130

indirect routine call 261, 471, 489
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jumping out of aroutine 488, 496

kind 449

ladder sequence 328

LALR(1) automaton 172

LALR(1) parsing 152, 170, 176, 191, 234
lambdal lifting 499, 559, 594

language generated by agrammar 40
last-def analysis 253

late evaluation 224, 228, 328

latency 671

lattice 250, 277

L-attributed grammar 230, 269, 275

lazy Boolean operator 117-118, 503

lazy evaluation 328, 547, 560, 564, 566, 575
lcc 389

least fixed point 43

|eft-associative 153, 540, 716
left-factoring 129

|eft-hand side 35

leftmost derivation 36

leftmost innermost redex 566

|eftmost outermost redex 566
|eft-recursion removal 129

left-recursive 38, 120, 127, 144
Lempel-Ziv compression 86
let-expression 543, 572, 594

lex 83, 94, 187

lexical analysis module 22

lexical analyzer 10, 61, 68, 83, 93-94, 541
lexical identification phase 98

lexical pointer 483-484, 491, 493, 514, 559
library 25, 281, 297, 376, 658, 672
lifetime 463

Linda 664

Lindakernel 678

Linda preprocessor 678

Linda Tuple Space 678

linear-time 31, 86, 111, 168, 224, 277, 406, 726
linked list 398, 403

linker 25, 376, 381, 389

lint 247

list 541

list comprehension 542, 557

list procedure 616, 654

live analysis 262-263, 265, 319, 333, 358
livevariable 262

LL(1) conflict 127-128, 715

LL(1) grammar 123, 127, 142

LL (1) parser generation 123

LL(1) parsing 121-122, 139, 715
LL(2) grammar 132, 190

LLgen 132, 142, 179, 232, 237, 715
LLgen directive 144

loader 376, 389

local attribute 203

local variable area 515

location 458

lock variable 660, 669
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signal handler 521, 537

signal operation 660, 670

signa statement 521

signature of a computer virus 83

simple symbolic interpretation 247, 277, 723
simulation on the stack 245

single inheritance 476

Single Program Multiple Data parallelism 685
SLR(1) parsing 152, 163, 190-191
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Smalltalk 33

sorted set 399

source language 1

SP 513

SP-2 657

sparse transition table 86
specialization 370

spineless tagless G-machine 592
spinning 669

SPMD parallelism 685

SR 674

stack 513

stack, direction of growth 513
stack of input buffers 105

stack pointer 513

stack representation 245

stack segment 376, 396

start symbol 35, 39, 136, 144, 199
state 80

state transition 80

static array 470

static attribute evaluation 204, 218
static binding 474

static cycle checking 211

static link 484, 491, 514

status indicator 282

storage representation in Linda 680
strength reduction 367

strict argument 565, 574, 576, 579, 594
strictness analysis 576, 594

string 39

strong-LL (1) parser 124

strongly LL(1) 124

strongly non-cyclic 217, 275
structural equivalence 455
structure type 465

subclass 472

subroutine 485

subset algorithm 81, 158, 346, 352
substitution in grammars 129
subtree 112

Succeed instruction 603, 605
suffix grammar 116, 188
supercompilation 363

suspend statement 485

suspended routine 439, 482, 485
switch statement 505

symbol 39

symbol table 98, 133, 188, 284, 442
symbolic interpretation 245
synchronization primitive 660
synchronous message passing 662
syntactic sugar 540, 553

syntax analysis 9, 57, 110, 440
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syntax analysis module 22 typed pointer 462
syntax tree 9, 110, 135, 230
synthesized attribute 196 UDP 671
unary relation 598
table compression 86 unbound variable 599, 612, 625
table lookup 68, 285, 347 undiscriminated union 467
tail call 582 unification 544, 596, 607, 609, 612, 634, 654—655
target code optimization module 24 uniform distribution in Linda 683
target language 1, 375, 523, 549 uniform self-identifying data representation 281
target register 309 Unify instruction 603, 609, 747
task 33, 656 union tag 467
task parallelism 665 union type 466
TCP/IP 671 unmarshaling 672
term 596 unrolling factor 511
termina 35 unwinding 566, 575, 589, 746
terminal production 40 update replicated copies 678
terminal symbol 35, 39 URL syntax 185
terminated routine 32, 462, 485 usage count 317, 362
test-and-set instruction 669 useless non-terminal 38
TeX 8 user space 667
thread 658, 662, 667
thread control block 667 vaidity span 463
thread preemption 668 value 458
threaded code 297 value of avariablein an assembler 379
threading (of an AST) 239, 247, 276, 287 variable descriptor 319
throughput 671 variable-length graph node 587
token 10, 35 vector 467
token description 61, 70, 77 vector apply node 588, 595
tokenize 10 very busy expression 277
top-down parser 113, 120, 142, 232 virtual method 473, 479
to-space 408, 425 visiting anode 112
totally-ordered group communication 678 visiting routine 220
traill 610, 634 vocabulary 39
transition diagram 82, 158, 161, 163 void type 460
transition function 80
transitive closure 42, 498 wait operation 660, 670
transitive closure algorithm 44 WAM 597, 623, 636, 638, 648, 653
translation 1 Warren Abstract Machine 597, 653
traversing anode 112 weight of a subtree 310-311, 313-314, 316, 365,
traversing atree 112 390
tree rewriting 290 weighted register allocation 310, 339, 349
triple 324, 326 while statement 276, 507, 509, 741
tuple matching 664 working stack 308, 412, 461, 483, 513, 515, 517
Tuple Space 658, 664, 678
Tuple Space server 678 yacc 176, 178, 234
two-scans assembly 380 yield statement 485
two-space copying 408, 420, 425, 437, 545
type 449 zeroth element 469, 533

type checking 449, 673

type declaration 449, 544, 551
type equivalence 454-455, 551
type extension 472

typetable 450, 552

type variable 544, 551



